Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T23:01:14.775Z Has data issue: false hasContentIssue false

Hexose Transport and Metabolism in Cultured Fibroblasts Derived from Normal and Alzheimer Disease Affected Individuals

Published online by Cambridge University Press:  29 November 2010

Ralph J. Germinario
Affiliation:
Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital.
Zully Chang
Affiliation:
Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital.
Maureen Oliveira
Affiliation:
Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital.

Abstract

The transport and metabolism of glucose was compared in cultured skin fibroblasts derived from normal and Alzheimer disease affected individuals. No significant differences were observed in sugar transport, CO2 production, lactate production, trichloroacetic acid soluble and precipitable material between the test groups. It is concluded that altered glucose uptake or metabolism is not a general characteristic of all Alzheimer disease cultured fibroblasts.

Résumé

Le transpon et le métabolisme du glucose ont été comparés dans des fibroblastes en culture dérivés d'individus normaux et des personnes affectées par la maladie d'Alzheimer. Il n'y avait pas de différence significative dans le transport des glucides, dans la production de gaz carbonique et de lactate. De plus, aucune variation entre les deux groupes n'a été constatée dans chacune des fractions: solubles on TCA précipitables. En conclusion, les différences constatées aussi bien au niveau de l'incorporation de glucose que dans le métabolisme ne sont pas une caractéristique de fibroblastes issus de personnes atteintes de la maladie d'Alzheimer.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andria-Waltenbough, A.M. & Puck, T.T. (1977). Alzheimer's disease: further evidence of a microtubular defect. J. Cell Biol. 75, 297a.Google Scholar
Brown, M.S. & Goldstein, J.L. (1974). Familial hypercholesterolemia: defective binding of lipoproteins to cultured fibroblasts associated with imparied regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Proc. Natl. Acad. Sci. USA 71, 788792.CrossRefGoogle Scholar
Cristofalo, V.J. & Kritchevsky, D. (1966). Respiration and glycolysis in the human diploid cell strain WI38. J. Cell. Physiol. 67, 125132.CrossRefGoogle Scholar
Cristofalo, V.J. & Sharf, B.B. (1973). Cellular senescence and DNA synthesis: diymidine incorporation as a measure of population age in human diploid cells. Exp. Cell Res. 76, 419427.CrossRefGoogle ScholarPubMed
Diamond, J.M., Matsuyama, S.S., Meier, K. & Jarvik, L.F. (1983). Elevation of erythrocyte countertransport in Alzheimer's dementia. N. Engl. J. Med. 309, 10611062.Google ScholarPubMed
Fitch, N., Becker, R. & Heller, A. (1988). The inheritance of Alzherimer's disease: A new interpretation. Ann. Neurol. 23, 1419.CrossRefGoogle Scholar
Foster, N.L., Chase, T.N., Redio, P., Patronas, N.J., Brooks, R.A. & Di Churo, G. (1983). Alzheimer's disease: Focal cortical changes shown by positron emission tomography. Neurology 33, 961965.CrossRefGoogle ScholarPubMed
Fratantoni, J.C., Hall, C.W. & Neufeld, E.F. (1968). The defect in Hurler's and Hunter's syndromes: faulty degradation of mucopolysaccharides. Proc. Nail. Acad. Sci. USA 60, 699706.CrossRefGoogle Scholar
Germinario, R.J., Chang, Z., Manuel, S. & Oliveira, M. (1985). Control of sugar transport in human fibroblasts independent of glucose metabolism or carrier-substrate interaction. Biochem. Biophys. Res. Commun. 128, 14181424.CrossRefGoogle ScholarPubMed
Germinario, R.J. & McQuillan, A. (1985). Glucocorticoid-induced modulation of insulin-stimulated DNA synthesis: Differential responsiveness in cell cultures derived from donors of different ages. Gerontology 31, 6575.CrossRefGoogle ScholarPubMed
Germinario, R.J., McQuillan, A., Oliveria, M. & Manuel, S. (1983). Enhanced insulin stimulation of sugar transport and DNA synthesis by glucocorticoids in cultured human skin fibroblasts. Arch. Biochem. Biophys. 226, 498505.CrossRefGoogle ScholarPubMed
Germinario, R.J. & Oliveira, M. (1979). Stimulation of hexose transport in cultured human skin fibroblasts by insulin. J Cell. Physiol. 99, 313318.CrossRefGoogle ScholarPubMed
Germinario, R.J., Oliveira, M. & Leung, H. (1978). Saturable and nonsaturable hexose uptake in cultured human skin fibroblasts. Can.J. Biochem. 56, 8088.CrossRefGoogle ScholarPubMed
Germinario, R.J., Oliveira, M., Manuel, S. & Taylor, M. (1986). Characteristics of normal and maturity-onset diabetic (type II diabetes) cell cultures: life spans and DNA synthetic capabilities. Gerontology 32, 148157.CrossRefGoogle ScholarPubMed
Germinario, R.J., Oliveira, M., Manuel, S. & Taylor, M. (1987). Hexose transport regulation in cultured fibroblasts derived from normal and type II diabetic patients. Clin. Invest. Med. 10, 295302.Google ScholarPubMed
Germinario, R.J., Oliveira, M. & Taylor, M. (1980). Studies on the effects of in vitro ageing on saturable and nonsaturable sugar uptake in cultured human skin fibroblasts. Gerontology 26, 181187.CrossRefGoogle ScholarPubMed
Germinario, R.J., Ozaki, S. & Kalam, N. (1984). Regulation of insulin binding and stimulation of sugar transport in cultured human skin fibroblasts by sugar levels in the culture medium. Arch. Biochem. Biophys. 234, 559566.CrossRefGoogle ScholarPubMed
Germinario, R.J., Rockman, H., Oliveira, M., Manuel, S. & Taylor, M. (1982). Regulation of sugar transport in cultured human skin fibroblasts. J. Cell. Physiol. 112, 367372.CrossRefGoogle Scholar
Goldstein, S. & Littlefield, J.W. (1969). Effect of insulin on the conversion of glucose 14C to 14CO2 by normal and diabetic fibroblasts in culture. Diabetes 18, 545549.CrossRefGoogle Scholar
Goldstein, S. & Trieman, G. (1975). Glucose consumption by early and late passage diploid human fibroblasts during growth and stationary phase. Experientia 31, 177180.CrossRefGoogle ScholarPubMed
Goldstein, S., Ballantyne, S.R., Robson, A.L. & Moerman, E. (1982). Energy metabolism in cultured human fibroblasts during aging in vitro. J. Cell. Physiol. 112, 419424.CrossRefGoogle ScholarPubMed
Howard, B.V., Fields, R.M., Mott, D.M., Savage, P.J., Nagulesparan, M. & Bennett, P.H. (1984). Diabetes and cell growm: lack of differences in growth characteristics of fibroblasts from diabetic and non-diabetic subjects. Horm. Metab. Res. 16, 168171.Google Scholar
Jarvik, L.F., Marsuyama, S.S., Kessler, J.O., Fu, T.K., Tsai, S.Y. & Clark, E.O. (1982). Philothermal response of polymorphonuclear leukocytes in dementia of the Alzheimer type. Neurobiol. Aging 3, 9399.CrossRefGoogle ScholarPubMed
Katzman, R. (1976). The prevalence and malignancy of Alzheimer disease. A major killer. Arch. Neurol. 33, 217218.CrossRefGoogle ScholarPubMed
Katzman, R. (1986). Alzheimer's disease. N. Engl. J. Med. 314, 964973.CrossRefGoogle ScholarPubMed
Larsson, T., Sjogren, T. & Jacobsen, G. (1963). Senile dementia—a clinical sociomedical and genetic study. Acta Psychiat. Scand. Suppl. 167, 39150.Google Scholar
Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with die Folin phenol reagant. J. Biol. Chem. 193, 265275.CrossRefGoogle Scholar
Markesberry, W.R., Leung, P.K. & Butterfield, D.A. (1980). Spin label and biochemical studies of erythrocyte membranes in Alzheimer's disease. J. Neurol. Sci. 45, 303330.CrossRefGoogle Scholar
Miller, A.E., Neighbour, P.A., Katzman, R., Aronson, M. & Lipkowitz, R. (1981). Immunologie studies in senile dementia of the Alzheimer type: Evidence of enhanced suppressor cell activity. Ann. Neurol. 10, 506510.CrossRefGoogle ScholarPubMed
Nordenson, I., Adolfson, R., Beekman, G., Bucht, G. & Winblad, G. (1980). Chromosomal abnormality in dementia of Alzheimer type. Lancet 1, 481482.CrossRefGoogle ScholarPubMed
Perry, R.H., Wilson, I.E., Bober, M.J., Atack, J., Blessed, G., Tomlinson, B.E. & Perry, E.K. (1982). Plasma and erythrocyte acetylcholesterase in senile dementia of Alzheimer type. Lancet 1, 174175.CrossRefGoogle Scholar
Peterson, C. & Goldman, J.E. (1986). Alterations in calcium coment and biochemical processes in cultured skin fibroblasts from aged and Alzheimer donors. Proc. Nati. Acad. Sci. USA 83, 27582762.CrossRefGoogle Scholar
Ravio, K.O. & Seegmiller, J.E. (1972). Genetic diseases of metabolism. Ann. Rev. Biochem. 41, 543576.CrossRefGoogle Scholar
Risberg, J. (1980). Regional cerebral blood flow measurements by 133 Xe-inhalation: methodology and applications in neuropsychology and psychiatry. Brian Lang. 9, 934.CrossRefGoogle Scholar
Robbins, J.H., Otsuka, F., Tarone, R.E., Polinsky, F.J., Brunback, R.A., Moshell, A.N., Nee, L.E., Ganges, M.B. & Cayeyx, S.T. (1983). Radiosensitivity in Alzheimer and Parkinson's disease. Lancet 1, 468469.CrossRefGoogle Scholar
Rosenbloom, A.L. & Rosenbloom, E.K. (1978). Insulin-dependent childhood diabetes: normal viability of cultured fibroblasts. Diabetes 27, 338341.CrossRefGoogle ScholarPubMed
Sims, N.R., Finegan, J.M. & Blass, J.P. (1985). Altered glucose metabolism in fibroblasts from patients with Alzheimer's disease. N. Engl. J. Med. 313, 638639.Google ScholarPubMed
Sims, N.R., Finegan, J.M. & Blass, J.P. (1987). Altered metabolic properties of cultured skin fibroblasts in Alzheimer's disease. Ann. Neurol. 21, 451457.CrossRefGoogle ScholarPubMed
Sorbi, S., Bird, E.D. & Blass, J.P. (1983). Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann. Neurol. 13, 7278.CrossRefGoogle ScholarPubMed
Stanbury, J.B., Wyngaarden, J.B., Frederickson, D.S., Goldstein, J.L. & Brown, M.S. (1983). The Metabolic Basis of Inherited Disease, 5th Ed. McGraw Hill, pp 2829.Google Scholar
St. George-Hyslop, P.H., Tanzi, R., Polinsky, R., Haines, J.L., Nee, L., Walkins, P., Myers, R.H., Feldman, R.G., Pollen, D., Drachman, D., Growdon, J., Bruni, A., Foncin, J.-F., Salmon, D., Frommalt, P., Amaducci, L., Sorbi, S., Piacentini, S., Stewart, G.D., Hobbs, W.J., Conneally, P.M. & Gusella, J.F. (1987). The genetic defect causing familial Alzheimer's disease maps on chromosome 21. Science 235, 885890.CrossRefGoogle ScholarPubMed
Vracko, R. & McFarland, B.H. (1980). Lifespans of diabetic and non-diabetic fibroblasts in vitro. Exp. Res. 129, 345350.Google ScholarPubMed