Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T06:59:06.993Z Has data issue: false hasContentIssue false

Aging, Attention, and Bimanual Coordination*

Published online by Cambridge University Press:  31 March 2010

Timothy D. Lee*
Affiliation:
McMaster University
Laurie R. Wishart
Affiliation:
McMaster University
Jason E. Murdoch
Affiliation:
McMaster University
*
Requests for offprints should be sent to: / Les demandes de tirés-a-part doivent être adressées à : Timothy Lee, Ph.D., Department of Kinesiology, McMaster University, 1280 Main St. West, Hamilton, ONL8S 4K1. ([email protected])

Abstract

Although aging is normally associated with declines in motor performance, recent evidence suggests that older adults suffer no loss in some measures of bimanual coordination relative to younger adults. Two hypotheses for this finding were compared in the present research. One hypothesis was based on the assumption that these coordination patterns are automatic and relatively impervious to the effects of aging. An alternative explanation is that older adults maintain this level of bimanual coordination at a cost of increased attention demand. These hypotheses were tested in an experiment in which bimanual coordination patterns (in-phase and anti-phase) were paced at two metronome frequencies (1 and 2 Hz), either alone or together, with serial performance of an attention-demanding task (adding 3s to a two-digit number at a 1 Hz pace). The results of the study provided some support for both hypotheses. The automaticity view was supported only for the coordination patterns at the 1 Hz metronome frequency. Support for an attention allocation hypothesis was shown in the observed-movement frequency data, as older adults tended to sacrifice movement frequency at the 2 Hz metronome pace in order to maintain performance in the movement and counting tasks. These findings are discussed relative to recent accounts of the role of automaticity in the absence of age-related differences in the performance of cognitive tasks.

Résumé

Bien que le vieillissement soit ordinairement associé au déclin de l'exécution motrice, les données récentes suggèrent que les personnes âgées ne souffrent pas de perte dans certaines épreuves de coordination bi-manuelle proportionnellement aux jeunes adultes. L'article offre une comparaison de deux hypothèses : une hypothèse repose sur la supposition que les modèles de coordination sont automatiques et sont relativement indifférents aux effets du vieillissement ; l'autre propose qu'afin de soutenir ce niveau de coordination bi-manuelle, les personnes âgées doivent augmenter leur niveau de concentration. Les hypothèses ont fait l'objet d'expérience où les modèles de coordination bi-manuelle (phase et anti-phase) ont été exposés à un rythme de deux fréquences métronomiques (1 et 2 Hz), soit individuel ou de concert avec une performance en série sur une tâche demandant un niveau de concentration (ajouts de 3s à un numéro à deux chiffres à un rythme de 1 Hz). Dans une certaine mesure, les résultats de l'étude soutiennent les deux hypothèses. L'approche automaticité n'était soutenue que pour les modèles de coordination à la fréquence métronomique de 1 Hz. L'approche de l'attribution à la concentration n'a été démontrée que pour les données observées dans la fréquence de mouvement ; puisque les personnes âgées ont tendance à sacrifier la fréquence de mouvement et de numération au rythme métronomique de 2 Hz. Ces résultats sont examinés à la lumière des recherches récentes sur le rôle de l'automaticité en l'absence de différences causées par l'âge lors de l'exécution des tâches cognitives.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

The research reported in this manuscript was supported by an NSERC grant (TDL) and by the Ontario Ministry of Health (LRW). We thank John Moroz and Douglas Oleksuik for technical assistance and Neil Charness for advice during the preparation of the manuscript. We also thank two anonymous reviewers of this paper for their helpful comments.

References

Baldissera, F., Cavallari, P., Marini, G., & Tassone, G. (1991). Differential control of in-phase and anti-phase coupling of rhythmic movements of ipsilateral hand and foot. Experimental Brain Research, 83, 375380.CrossRefGoogle ScholarPubMed
Cole, K.J. (1991). Grasp force control in older adults. Journal of Motor Behavior, 23, 251258.CrossRefGoogle ScholarPubMed
Craik, F.I.M., & Jacoby, L.L. (1996). Aging and memory: Implications for skilled performance. In Rogers, W.A., Fisk, A.D., & Walker, N. (Eds.), Aging and skilled performance: Advances in theory and applications (pp. 113137). Mahwah, NJ: Erlbaum.Google Scholar
Dixon, R.A., Kurzman, D., & Friesen, I.C. (1993). Handwriting performance in younger and older adults: Age, familiarity, and practice effects. Psychology and Aging, 8, 360370.CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Minimental state”;: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.CrossRefGoogle Scholar
Fontaine, R.J., Lee, T.D., & Swinnen, S.P. (1997). Learning a new bimanual coordination pattern: Reciprocal influences of intrinsic and to-be-learned patterns. Canadian Journal of Experimental Psychology, 51, 19.CrossRefGoogle ScholarPubMed
Geary, D.C., Frensch, P. A., & Wiley, J.G. (1993). Simple and complex mental subtraction: Strategy choice and speed-of-processing differences in younger and older adults. Psychology and Aging, 8, 242256.CrossRefGoogle ScholarPubMed
Greene, L.S., & Williams, H.G. (1996). Aging and coordination from the dynamic pattern perspective. In Ferrandez, A.M. & Teasdale, N. (Eds.), Changes in sensory and motor behavior in aging (pp. 89131). Amsterdam: Elsevier.CrossRefGoogle Scholar
Hasher, L., & Zacks, R.T. (1979). Automatic and effortful processes in memory. Journal of Experimental Psychology: General, 108, 356388.CrossRefGoogle Scholar
Hasher, L., & Zacks, R.T. (1988). Working memory, comprehension, and aging: A review and a new view. In Bower, G.H. (Ed.), The psychology of learning and motivation (Vol. 22, pp. 193225). New York: Academic Press.Google Scholar
Hay, J.F., & Jacoby, L.L. (1999). Separating habit and recollection in young and older adults: Effects of elaborative processing and distinctiveness. Psychology and Aging, 14, 122134.CrossRefGoogle Scholar
Kelso, J.A.S. (1984). Phase transitions and critical behavior in human bimanual coordination. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 15, R1000R1004.Google Scholar
Lee, T.D., Blandin, Y., & Proteau, L. (1996). Effects of task instruction and oscillation frequency on bimanual coordination. Psychological Research, 59, 100106.CrossRefGoogle ScholarPubMed
Lee, T.D., Swinnen, S.P., & Verschueren, S. (1995). Relative phase alterations during bimanual skill acquisition. Journal of Motor Behavior, 27, 263274.CrossRefGoogle ScholarPubMed
Mathias, S., Nayak, U.S.L., & Isaacs, B. (1986). Balance in elderly patients: The “Get-up and Go” test. Archives of Physical Medicine and Rehabilitation, 67, 387389.Google Scholar
Podsiadlo, D., & Richardson, S. (1991). The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. Journal of the American Geriatrics Society, 39, 142148.CrossRefGoogle ScholarPubMed
Rabbitt, P. (1979). How old and young subjects monitor and control responses for accuracy and speed. British Journal of Psychology, 70, 305311.CrossRefGoogle Scholar
Salthouse, T.A. (1994). The nature of the influence of speed on adult age differences in cognition. Developmental Psychology, 30, 240259.CrossRefGoogle Scholar
Salthouse, T.A., & Coon, V.E. (1994). Interpretation of differential deficits: The case of aging and mental arithmetic. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20, 11721182.Google ScholarPubMed
Schaie, K.W. (1983). The Seattle longitudinal study: A 21-year exploration of psychometric intelligence in adulthood. In Schaie, K.W. (Ed.), Longitudinal studies of adult psychological development (pp. 64135). New York: Guilford.Google Scholar
Schmidt, R.A., & Lee, T.D. (1999). Motor control and learning: A behavioral emphasis (3rd ed.). Champaign, IL: Human Kinetics.Google Scholar
Spirduso, W.W. (1995). Physical dimensions of aging. Champaign, IL: Human Kinetics.Google Scholar
Swinnen, S.P., Verschueren, S.M.P., Bogaerts, H., Dounskaia, N., Lee, T.D., Stelmach, G.E., & Serrien, D.J. (1998). Age-related deficits in motor learning and differences in feedback processing during the production of a bimanual coordination pattern. Cognitive Neuropsychology, 15, 439466.CrossRefGoogle ScholarPubMed
Temprado, J.J., Chardenon, A., & Laurent, M. (2001). Interplay of biomechanical and neuromuscular constraints on pattern stability and attentional demands in a bimanual coordination task in human subjects. Neuroscience Letters, 303, 127131.CrossRefGoogle Scholar
Temprado, J.J., Zanone, P.G., Monno, A., & Laurent, M. (1999). Intentional stabilization of bimanual coordination: A study through attentional load measure. Journal of Experimental Psychology: Human Perception and Performance, 25, 15761594.Google Scholar
Trenerry, M.R., Crosson, B., DeBoe, J., & Leber, W.R. (1990). Visual search and attention test. Odessa, FL: Psychological Assessment Resources.Google Scholar
Verhaeghen, P., & De Meersman, L. (1998). Aging and the Stroop effect: A meta-analysis. Psychology and Aging, 13, 120126.CrossRefGoogle ScholarPubMed
Wechsler, D. (1981). WAIS-R manual. New York: Psychological Corporation.Google Scholar
Williams, K., & Bird, M. (1992). The aging mover: A preliminary report on constraints to action. International Journal of Aging and Human Development, 34, 241255.CrossRefGoogle ScholarPubMed
Wishart, L.R., Lee, T.D., Cunningham, S.J., & Murdoch, J.E. (2002). Age-related differences and the role of vision in learning a bimanual coordination pattern. Acta Psychologica, 110, 247263.CrossRefGoogle Scholar
Wishart, L.R., Lee, T.D., Murdoch, J.E., & Hodges, N.J. (2000). Aging and bimanual coordination: Effects of speed and instructional set on in-phase and anti-phase patterns. Journal of Gerontology: Psychological Sciences, 55B, P85P94.CrossRefGoogle Scholar
Woollacott, M.H. (1993). Age-related changes in posture and movement. The Journals of Gerontology, 48 (special edition), 5660.CrossRefGoogle ScholarPubMed
Yamanishi, J., Kawato, M., & Suzuki, R. (1980). Two coupled oscillators as a model for the coordinated finger tapping by both hands. Biological Cybernetics, 37, 219225.CrossRefGoogle Scholar
Zanone, P.G., & Kelso, J.A.S. (1992). Evolution of behavioral attractors with learning: Nonequilibrium phase transitions. Journal of Experimental Psychology: Human Perception and Performance, 18, 403421.Google ScholarPubMed