Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T17:31:28.910Z Has data issue: false hasContentIssue false

Biology and Evolution of Aging: Implications for Basic Gerontological Health Research

Published online by Cambridge University Press:  29 November 2010

Calvin B. Harley
Affiliation:
McMaster University

Abstract

The maximum lifespan of different animal species is genetically determined. Many biochemical and physiological systems which influence longevity have apparently evolved to regulate growth and development in a way which maximizes fitness given the ecological niche and constraints on the species. The diversity of individual genetic effects on aging makes it unlikely that either extrinsic factors such as nutrition and medicine or genetic intervention will have dramatic effects on the maximum lifespan of a species, in spite of significant qualitative effects on individuals. However, understanding the fundamental genetic determinants of senescence may be of particular importance to the treatment and or prevention of age associated problems involving tissue degeneration and/or cancer. Considerable investment in basic biological research on both aging and developmental processes is needed before this understanding can be achieved.

Résumé

La durée maximum de la vie chez différentes espèces d'animaux est génétiquement déterminée. Plusieurs systèmes biochimiques et physiologiques qui influencent la longévité ont de toute évidence évolué pour régulariser la croissance et le développement de façon à maximiser la forme physique, compte tenu de la niche écologique et de toutes les contraintes qui agissent sur les différentes espèces. Puisque toute une série de facteurs génétiques individuels interviennent au niveau du vieillissement, il est peu probable qu'un petit nombre de facteurs extrinsèques tel l'alimentation et la médecine ou encore l'intervention génétique réussissent à changer sensiblement la durée maximum de la vie de l'espèce en général, malgré les changements considérables qui se produisent sur une base individuelle. Cependant, une connaissance approfondie des déterminants génétiques fondamentaux de la sénéscence semble particulièrement importante au niveau du traitement et de la prévention de problèmes associés au vieillissement et reliés à la dégénération des tissus et/ou au cancer. Toutefois, pour arriver à cette fin, une somme considérable devra être investie au profit des recherches de base dans la biologie du vieillisement et des processus de formation.

Type
Articles
Copyright
Copyright © Canadian Association on Gerontology 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anderson, W.F. (1984). Prospects for human gene therapy. Science 226, 401409.CrossRefGoogle ScholarPubMed
Cairns, J. (1975). The cancer problem. Sci Amer 233(11), 6478.CrossRefGoogle ScholarPubMed
Cheung, H.T., Twu, J.-S., & Richardson, A. (1983). Mechanism of the age-related decline in lymphocyte proliferation: role of IL-2 production and protein synthesis. Exp Geront 18, 451460.CrossRefGoogle ScholarPubMed
Cutler, R.G. (1984). Free radicals and aging. In Roy, A.K. and Chatterjee, B.: Molecular Basu of Aging, (pp. 263354). Academic Press, Orlando.Google Scholar
DellOrco, R.T., Mertens, J.G. & Kruse, P.F. Jr, (1973). Doubling potential, calendar time, and senescence of human diploid cells in culture. Exptl Cell Res 77, 356360.CrossRefGoogle ScholarPubMed
Falconer, D.S. (1967). Introduction to Quantitative Genetics. Ronald Press Co. N.Y.Google Scholar
Gilchrest, B.A. (1984). Skin and Aging Processes. CRC Press, Boca Raton.Google Scholar
Goldstein, S. & Singal, D.P. (1974). Senescence of cultured human fibroblasts: Mitotic versus metabolic time. Exptl Cell Res SS, 359364.CrossRefGoogle ScholarPubMed
Goldstein, S., Harley, C.B. & Moerman, E.J. (1983). Some aspects of cellular aging. J Chron Dis 36, 103116.CrossRefGoogle ScholarPubMed
Gupta, R.S. (1980). Senescence of cultured human fibroblasts. Are mutations responsible? J Cell Physwl 103, 209216.CrossRefGoogle ScholarPubMed
Harley, C.B. & Goldstein, S. (1978). Cultured human fibroblasts: Distribution of cell generations and a critical limit. J Cell Physiol 97, 509515.CrossRefGoogle Scholar
Harley, C.B. & Goldstein, S. (1981). Retesting the commitment theory of cellular aging. Science 207, 191193.CrossRefGoogle Scholar
Harrington, L.A. & Harley, C.B. (1988). Effect of vitamin E on longevity and reproduction in Caenorhabditis Elegans. Mech Ageing Dev (in press).CrossRefGoogle Scholar
Harrison, D.E. (1983). Long-term erythropoietic repopulating ability of old, young, and fetal stem cells. J Exp Med 157, 14961504.CrossRefGoogle Scholar
Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Expt Cell Res 37, 614636.CrossRefGoogle ScholarPubMed
Hayflick, L. (1970). Aging under glass. Exp Geront 5, 291303.CrossRefGoogle ScholarPubMed
Hayflick, L. & Moorhead, P.S. (1961). The serial cultivation of human diploid cell strains. Expt Cell Res 25, 585621.CrossRefGoogle ScholarPubMed
Johnson, L.K. & Longenecker, J.P. (1982). Senescence of aortic endothelial cells in vitro: influence of culture conditions and preliminary characterization of the senescent phenotype. Mech Age Dev 18, 118.CrossRefGoogle ScholarPubMed
Johnson, T.E. & Mitchell, D.H. (1984). Invertebrate Models in Aging Research (CRC Press, New York).Google Scholar
Kang, J., Lemaire, H., Unterbeck, A., Salbaum, J.M., Masters, C.L., Grzeschik, K-H, Multhaup, G., Beyreuther, K. & Muller-Hill, B. (1987). The precursor of Alzheimer's disease amvloid A4 protein resembles a cell-surface receptor. Nature 323, 733736.CrossRefGoogle Scholar
Kohn, R.R. (1971). Principles of Mammalian Aging. Prentice-Hall, New Jersey.Google Scholar
Kontermann, K. & Bayreuther, K. (1979). The cellular aging of rat fibroblasts in vitro is a differentiation process. Gerontology 25, 261274.CrossRefGoogle ScholarPubMed
Ledley, F.D. (1987). Somatic gene therapy for human disease: A problem of eugenics? Trends in Genetics 3, 112115.CrossRefGoogle ScholarPubMed
Loo, D.T., Fuquay, J.I., Rawson, C.L. & Barnes, D.W. (1987). Extended culture of mouse embryo cells without senescence: Inhibition by serum. Science 236, 200202.CrossRefGoogle ScholarPubMed
Lyman, C.P., O'Brien, R.C., Greene, G.C., & Papfrangos, E.D. (1981). Hibernation and longevity in the turkish hamster Mesocricetus brandti. Science 212, 668670.CrossRefGoogle ScholarPubMed
Maynard Smith, J. (1976). Group selection. Q. Rev Biol 51, 277283.Google Scholar
Medawar, P.B. (1952). An Unsolved Problem of Biology. H.K. Lewis, London.Google Scholar
Masoro, E.J. (1984). Dietary restriction and metabolism and disease. In Armbrecht, H.J., Prendergast, J.M. & Coe, R.M. (eds) Nutritional Intervention in the Aging Process, (pp. 8794). Van Nostrand Reinhold Co., Toronto.CrossRefGoogle Scholar
Mueller, L.D. (1987). Evolution of accelerated senescence in laboratory population of Drosophila. Proc Nati Acad Sci, 84 19741977.CrossRefGoogle ScholarPubMed
Mueller, S.N., Rosen, E.M. & Levine, E.M. (1980). Cellular senescence in a cloned strain of bovine fetal aortic endothelial cells. Science 207, 889891.CrossRefGoogle Scholar
Rheinwald, J.R. & Green, H. (1975). Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6, 331334.CrossRefGoogle ScholarPubMed
Rohme, D. (1981). Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo. Proc Natl Acad Sci 78, 50095013.CrossRefGoogle ScholarPubMed
Rose, M. & Charlesworth, B. (1980). A test of evolutionary theories of senescence. Nature 287, 141142.CrossRefGoogle ScholarPubMed
Rosen, R. (1978). Feedforward and global system failure: general mechanism for senescence. J Theor Biol 74, 579590.CrossRefGoogle ScholarPubMed
Sacher, G.A. (1977). Life table modification and life prolongation. In Finch, C.E. & Hayflick, L. (eds) Handbook of the Biology of Aging, (pp. 607620). Van Nostrand Reinhold Co., Toronto.Google Scholar
Schwartz, A.G. & Moore, C.M. (1977). Inverse correlation between species life span and capacity of cultured fibroblasts to bind 7,12-dimethylbenz(a)antracene to DNA. Exp Cell Res, 109, 448450.CrossRefGoogle Scholar
Simmons-Tropea, D. & Osborn, R. (1979). Disease, survival and death, the health status of Canada's elderly. In: Marshall, V.W. (ed) Aging in Canada: Social Perspectives, Fitzhenry and Whiteside, Markham, Ontario.Google Scholar
Stanbury, J.B., Wyngaarden, J.B., Fredrickson, D.S., Goldstein, J.L., & Brown, M.S. (1983). Metabolic Basis of Inherited Disorders (McGraw-Hill N.Y.).Google Scholar
Stanulis-Praeger, B.M. (1987). Cellular senescence revisted: a review. Mech Age Dev 38, 148.CrossRefGoogle Scholar
Swim, H.E. & Parker, R.F. (1957). Culture characteristics of human fibroblasts propagated serially. AmJHyg 66, 235243.Google ScholarPubMed
Valeriote, F. & Tolen, S. (1983). Extensive proliferative capacity of haematopoietic stem cells. Cell Tissue Kinet 16, 15.Google ScholarPubMed
Walton, J. (1982). The role of limited cell replicative capacity in pathological age change. A review. Mech Aging & Develop 19, 217244.CrossRefGoogle ScholarPubMed
Weinberg, R.A. (1985). The molecules of life. Sci Amer 253 (Od), 4867.CrossRefGoogle ScholarPubMed
Weismann, A. (1891). Essays on Heredity. Clarendon Press, Oxford, xv + 471 pp.Google Scholar
Williams, G.C. (1957). Pleiotrophy, national selection, and the evolution of senescence. Evolution 11, 398411.CrossRefGoogle Scholar
Williams, L.H., Udupa, K.B., & Lipshitz, D.A. (1986). Evaluation of the effect of age on hematopoiesis in the C57B1/6 mouse. Exp Hematol 14, 827832.Google Scholar
Wilson, E.O. (1980). Sociobiology. Harvard University Press, Cambridge, 5063.Google ScholarPubMed
Zharhary, D. (1986). T cell involvement in the decrease of antigen-responsive B cells in aged mice. Eur J Immunol 16, 11751178.CrossRefGoogle ScholarPubMed