Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-23T21:12:31.872Z Has data issue: false hasContentIssue false

Vertebroplasty in Osteoporotic Spine Fractures: A Quality of Life Assessment

Published online by Cambridge University Press:  02 December 2014

Krishna Kumar*
Affiliation:
Department of Surgery, Section of Neurosurgery, Regina General Hospital, University of Saskatchewan, Regina, SK, Canada
A.K. Verma
Affiliation:
Department of Radiology, Regina General Hospital, University of Saskatchewan, Regina, SK, Canada
Jefferson Wilson
Affiliation:
Department of Surgery, Section of Neurosurgery, Regina General Hospital, University of Saskatchewan, Regina, SK, Canada
Alika LaFontaine
Affiliation:
Department of Surgery, Section of Neurosurgery, Regina General Hospital, University of Saskatchewan, Regina, SK, Canada
*
Medical office wing, Regina General Hospital, Regina, SK, Canada S4P 0W5
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

Our goal was to perform a quantitative evaluation of the improvement in functional capacity, quality of life, mental function, reduction in drug intake and impact on hospital admissions after vertebroplasty in the treatment of osteoporotic compression fractures. The efficacy of vertebroplasty in relief of pain has been addressed in previous publications but the quantitative evaluation of improvement in quality of life has not been addressed before.

Methods:

This is a prospective study of 42 patients with 83 symptomatic vertebral fractures treated by vertebroplasty with a mean follow-up of 9.1 months. The outcome was measured by pre and postoperatively utilizing the Visual Analogue Scale, the Oswestry Disability Index, the Rolland Morris Scale for Back Pain and EuroQol-5D questionnaire (EQ-5D). The postoperative evaluations were performed at one week, one month, three month, and six month intervals thereafter.

Results:

In 34 out of 39 active patients, marked pain relief was noted (87%). The Visual Analogue Scale score improved from a mean preoperative score of 8.2 to a mean postoperative score of 2.9 (p=0.0000003) at one week follow up and 3.9 at the last follow-up. The Rolland Morris Scale for Back Pain showed a drop from a mean preoperative rating of 13 to a mean postoperative rating of 10, showing a 25% improvement (p= 0.0207). The Oswestry Disability Index preoperatively was 64.4 which improved to 43.8 postoperatively, showing a 32% improvement (p= 0.0207). The EQ-5D showed a mean preoperative index value of 0.097 and mean postoperative index value of 0.592 (p = 0.0000003). All p-values were determined by the Willcoxin sign-ranked test.

Conclusion:

Vertebroplasty is a safe and efficacious procedure with a resulting improvement in pain and quality of life.

Résumé:

RÉSUMÉ: Objectif:

Le but de cette étude était d’évaluer quantitativement l’amélioration fonctionnelle, la qualité de vie, la fonction mentale, la diminution de la prise de médicaments et l’impact sur l’hospitalisation chez les patients ayant subi une vertébroplastie pour traiter des fractures ostéoporotiques par compression. L’efficacité de la vertébroplastie pour le soulagement de la douleur a fait l’objet de publications antérieures, mais l’évaluation quantitative de l’amélioration de la qualité de vie n’a pas été étudiée.

Méthodes:

Il s’agit d’une étude prospective de 42 patients présentant 83 fractures vertébrales symptomatiques traitées par vertébroplastie. Le suivi moyen a été de 9,1 mois. Le résultat était évalué au moyen de l’échelle analogue visuelle (ÉAV), du questionnaire d’invalidité d’Oswestry (QIO), de l’échelle de Rolland-Morris (ÉRM) pour l’évaluation de la douleur et de l’échelle EQ-5D avant et après la chirurgie. Les évaluations postopératoires étaient effectuées après 1 semaine, 1 mois, 3 mois et aux 6 mois par la suite.

Résultats:

Chez 34 des 39 patients actifs, une diminution importante de la douleur a été notée (87%). Le score à l’ÉAV s’est amélioré, passant d’un score moyen avant la chirurgie de 8,2 à un score moyen après la chirurgie de 2,9 (p = 0,0000003) à 1 semaine et à 3,9 au moment de la dernière évaluation du suivi. Le score à l’ÉRM a baissé, la moyenne étant de 13 avant la chirurgie et de 10 après, soit une amélioration de 25% (p = 0,0207). Le score au QIO était de 64,4 avant la chirurgie et de 43,8 après, soit une amélioration de 32% (p = 0,0207). Le score moyen au questionnaire EQ-5D était de 0,097 avant la chirurgie et de 0,592 après (p = 0,0000003). Toutes les valeurs de p ont été obtenues au moyen du test de la somme des rangs de Wilcoxon.

Conclusion:

La vertébroplastie est une intervention sûre et efficace qui procure une amélioration de la douleur et de la qualité de vie.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2005

References

1. Cortet, B, Cotten, A, Boutry, N, et al. Percutaneous vertebroplasty inthe treatment of osteoportic vertebral compression fractures: an open prospective study. J Rheumatology 1999; 26:22222228.Google Scholar
2. Ray, NF, Chan, JK, Thamer, M, Melton, J. Medical expenditures forthe treatment of osteoporotic fractures in the United States in 1995: Report from the National Osteoporosis Foundation. J Bone Miner Res 1997; 12:2431.CrossRefGoogle Scholar
3. Galibert, P, Deramond, H, Roast, P, LeGars, D. Preliminary note on theof treatment of vertebral angioma by percutaneous acrylic vertebroplasty. Neurochirurgie 1987; 33:166168.Google Scholar
4. Bascooulergue, Y, Duquessnel, J, Leclercq, R. Percutaneous injectionof methylmethacrylate in the vertebral body for t treatment of various diseases; percutaneous vertebroplasty. Radiology 1988; 169:372.Google Scholar
5. McGraw, JK, Lippert, JA, Minkus, KD. Prospective Evaluation ofPain Relief in 100 Patients Undergoing Percutaneous Vertebroplasty: Results and Follow-up. J Vasc Interv Radiol 2002; 13:883-886.Google Scholar
6. Zoarski, G, Snow, P, Olan, W. Percutaneous vertebroplasty forosteoporotic compression fractures: Quantitative prospective evaluation of long-term outcomes. J Vasc Interv Radiol 2002; 13:139148.CrossRefGoogle ScholarPubMed
7. Barr, JD, Barr, MS, Lemley, TJ, et al. Percutaneous vertebroplasty forpain relief and spinal stabilization. Spine 2000; 25:923928.Google Scholar
8. Jensen, ME, Evans, AJ, Mathis, JM, et al. Percutaneouspolymethylmethacrylate vertebroplasty in the treatment of osteoportic vertebral body compression fractures: technical aspects. Am J Neuroradiol 1997;18(10)18971904.Google Scholar
9. Fourney, DR, Schomer, DF, Nader, R. Percutaneous vertebroplastyand kyphoplasty for painful vertebral body fractures in cancer patients. J. Neurosurg 2003: 98(1 suppl):2130.Google Scholar
10. Weill, A, Chiras, J, Simon, J. Spinal metastases: Indications for andresults of percutaneous injection of acrylic surgical cement. Radiology 199:241247.Google Scholar
11. Cotten, A, Dewatre, , Cortet, B, et all: Percutaneous vertebroplasty forosteolytic metastases and myeloma: effects of the percentage of lesion filling and the leakage of methyl methacrylate at clinicalfollow-up. Radiology 1996; 200:525530.CrossRefGoogle Scholar
12. Mathis, JM, Barr, JD, Belkoff, SM, et all. PercutaneousVertebroplasty: A developing standard of care for vertebral compression fractures. AJNR Am J Neuroradiol 2001; 22:373381.Google Scholar
13. Cyteval, C, Sarraberre, MP, Roux, JO, et all. Acute osteoporoticvertebral collapse: Open study on percutaneous injection of acrylic surgical cement in 20 patients. AJR Am J Roentgenol 1999; 173:16851690.Google Scholar
14. Dousset, V, Mousselard, H, de Monck d'User, L, et al. Asymptomatichaemangioma treated by percutaneous vertebroplasty. Neuroradiology 1996; 38:392394.Google Scholar
15. Feydy, A, Cognard, C, Miaux, Y, et al. Acrylic vertebroplasty insymptomatic cervical vertebral hemangionmas: Report of 2cases. Neuroradiology 1996; 38:389391.CrossRefGoogle Scholar
16. Carlsson, AM. Assessment of chronic pain: aspects of reliability andvalidity of visual analogue scale. Pain 1983; 16:87101.CrossRefGoogle ScholarPubMed
17. Huskisson, EC. Visual analogue scales. In: Melzack, R, (Ed.) Painmeasurement and assessment. New York: Raven Press, 1983: 3340.Google Scholar
18. Fairbank, JC, Pynsent, PB. The oswestry disability index. Spine 2000; 25:29402952.Google Scholar
19. Stratford, PW, Binkley, JM, Riddle, DL. Development and initialvalidation of the back pain functional scale. Spine 2000; 25:20952102.Google Scholar
20. Jacob, T, Baras, M, Zeev, A, Epstein, L. Low back pain: reliability ofa set of pain measurement tools. Arch Phys Med Rehabil 2001;82:735742.CrossRefGoogle Scholar
21. Badia, X, Montserrat, R, Baro, E, et al. Impact of IBS Patters onHealth Related Quality of Life. http://www.euroqol.org/meetings/meeting2001/meeting201-16.pdf Google Scholar
22. Dolan, P. Modeling Valuations for EuroQol Health States. MedicalCare 1997; 35:10951108.Google Scholar
23. Mathis, JM, Barr, JD, Belkoff, SM, et al. PercutaneousVertebroplasty: A developing standard in of care for vertebralcompression fractures. AJNR 2001; 22:373381.Google Scholar
24. Jackson, S, Tenenhouse, A, Robertson, L. Vertebral fracture definitionfrom population-based data: preliminary results from the Canadian Multicenter Osteoporosis Study (CaMos). Osteoporos Int 2000; 11:680687.CrossRefGoogle ScholarPubMed
25. Lorrain, J, Paiement, G, Chevrier, N, et al. Population demographicsand socioeconomic impact of osteoprotic fractures in Canada. Menopause 2003; 10:228234.Google Scholar
26. Amar, AP, Larsen, DW, Esnaashari, N, et al. Percutaneoustranspedicular polymethylmethacrylate vertebroplasty for the treatment of spinal compression fractures. Neurosurgery 2001; 49: 11051115.Google Scholar
27. Riggs, BL and Melton, LJ: The worldwide problem of osteoporosis:insights afforded by epidemiology. Bone 1999; 17:505S-511S.Google Scholar
28. Papaioannou, A, Watts, N et al. Diagnosis and management of vertebral fractures in elderly adults. Am J Med 2002; 113: 220228.Google Scholar
29. Rao, R, Singrakhia, M. Painful Osteoporotic vertebral fracture: pathogenesis, evaluation, and roles of vertebroplasty and kyphoplasty in its management. J Bone Joint Surg Am 2003; 85:20102022.Google Scholar
30. Peters, K, Guiot, B, Martin, P, et al. Vertebroplasty for osteoporotic compression fractures: Current practice and evolving techniques. Neurosurgery 2002; 51(suppl 2):96103.Google Scholar
31. Shang-won, Yu, Po-Cheng, Lee, Ching-Hou, Ma, et al. Vertebroplasty for the treatment of osteoporotic compression spinal fracture: Comparison of remedial action at different stages of injury. J Trauma 2004; 56:629632.Google Scholar
32. Bai, B, Jazrawi, LM, Kummer, FJ, et al. The use of an injectable, biodegradable calcium ohosphate bone substitute for the prophylactic augmentation of osteoportic vertebrae and the management of vertebral compression fractures. Spine 1999; 24: 15211526.Google Scholar
33. Deramond, H, Wright, NT, Belkoff, SM. Temperature elevation caused by bone cement polymerization during vertebroplasty. Bone 1999; 25(suppl 2):17S-21S.Google Scholar
34. Dean, JR, Ison, KT, Gishen, P. The strengthening effects of percutaneous vertebroplasty. Clin Radiol 2000; 55:471476.Google Scholar
35. Maynard, AS, Jensen, ME, Schweickert, PA, et al. Value of Bone Scan imaging in predicting pain relief from percutaneous vertebroplasty in osteoporotic vertebral fractures. AJNR 2000; 21: 18071812.Google Scholar
36. Tohmeh, Ag, Mathis, JM, Fenton, DC, et all. Biomechanical efficacy of unipedicular versus bipedicular vertebroplasty for the management of osteoporotic compression fractures. Spine 1999; 24: 17721776.Google Scholar
37. Belkoff, SM, Maroney, M, Fenton, DC, et al. An in vitro biomechanical evaluation of bone cements used in percutaneous vertebroplasty. Bone 1999; 25:23S-26S.Google Scholar
38. Belkoff, SM, Mathis, JM, Erbe, EM, et al. Biomechanical evaluation of a new bone cement for use in vertebroplasty. Spine 2000; 25:10611064.Google Scholar
39. Orr, R. Treatment of osteoporotic vertebral compression fractures with vertebral augmentation: Vertebroplasty and Kyphoplasty. Spine Surgery 2004; 5:2732.Google Scholar
40. Al-assir, I, Perez-Higueras, A, Florensa, J, et all. Percutaneous vertebroplasty: A special syringe for cement injection. Am J Neuroradiol 2000; 21:159161.Google Scholar
41. Padovani, B, Kasriel, O, Brunner, P, et al. Pulmonary embolism caused by acrylic cement: A rare complication of percutaneous vertebroplasty. AJNR Am J Neuroradiol 1999; 20:375377.Google Scholar
42. Garfin, S, Yuan, H, Reiley, M: Kyphoplasty and Vertebroplasty for the treatment of painful osteoporotic compression fractures. Spine 2001; 26:15111515 Google Scholar
43. Phillips, F. Minimally invasive treatments of osteoporotic vertebral compression fractures. Spine 2003; 28:S45-S53.Google Scholar
44. Truumees, E. Comparing kyphoplasty and vertebroplasty. Advances in osteoporotic fracture management 2002; 1:114123.Google Scholar
45. Lieberman, I, Dudeney, S, Reinhardt, M, et al. Initial outcome and efficacy of ‘kyphoplasty” in the treatment of painful osteoporotic vertebral compression fractures. Spine 2001; 26:16311638.Google Scholar
46. Phillips, F, Ho, E, Campbell-Hupp, M, et al. Early radiographic and clinical results of balloon kyphoplasty for the treatment of osteoporotic vertebral compression fractures. Spine 2003; 28:22602267.CrossRefGoogle ScholarPubMed
47. Medical Advisory Secretariat Ministry of Health and Long-Term Care Government of Ontario: Balloon Kyphoplasty: Health Technology Literature review. December 2004.Google Scholar