Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T06:52:01.088Z Has data issue: false hasContentIssue false

Spinal Somatosensory Evoked Potentials in Patients with Tethered Cord Syndrome

Published online by Cambridge University Press:  18 September 2015

Alberto Polo*
Affiliation:
Dipartimento di Scienze Neurologiche E Della Visione, Sezione Neurologia, Università’ Degli Studi di Verona
Giampietro Zanette
Affiliation:
Dipartimento di Scienze Neurologiche E Della Visione, Sezione Neurologia, Università’ Degli Studi di Verona
Paolo Manganotti
Affiliation:
Dipartimento di Scienze Neurologiche E Della Visione, Sezione Neurologia, Università’ Degli Studi di Verona
Laura Bertolasi
Affiliation:
Dipartimento di Scienze Neurologiche E Della Visione, Sezione Neurologia, Università’ Degli Studi di Verona
Domenico De Grandis
Affiliation:
Divisione di Neurologia, Arcispedale S. Anna, Ferrara
Nicolo’ Rizzuto
Affiliation:
Divisione di Neurologia, Arcispedale S. Anna, Ferrara
*
Dipartimento di Scienze Neurologiche E Della Visione, Sezione Neurologia, Universita’ Degli Studi di Verona, Policlinico Borgo Roma, via Delle Menegone, 37134 – Verona, Italy
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We studied the electrophysiological changes occurring in six patients with tethered cord syndrome. Evidence of spinal malformations was provided by magnetic resonance imaging. The functional assessment of the spinal cord was performed by analysing both spinal and cortical somatosensory evoked potentials. The evoked electrospinogram was recorded from the thoracic and lumbosacral spinous processes. The N22 lumbosacral potential was selectively affected, being rostrocaudally displaced and reduced in amplitude or even absent in patients with neurological signs indicating a segmental lower cord lesion. Inter-peak somatosensory evoked potentials latency was normal in all cases, suggesting that ascending axonal potentials in the dorsal column fibres may be synchronized. Segmental potentials of the lumbosacral response, originating from the post-synaptic activity of dorsal horn interneurons, are selectively affected in this syndrome resulting from the rostrocaudal displacement of the spinal cord due to tethering. Our findings in the clinical field are consistent with previous experimental evidence indicating a different sensitivity of the gray vs. white matter to progressive stretching.

Résumé:

Résumé:

Potentiels évoqués somesthésiques spinaux chez les patients atteints du syndrome du filum terminale. Nous avons étudié les changements électrophysiologiques présents chez six patients atteints du syndrome du filum terminale. Les malformations médullaires étaient détectées par résonance magnétique nucléaire. L’évaluation fonctionnelle de la moelle épiniere était effectuée par l’analyse des potentiels évoqués somesthésiques spinaux et corticaux (PES). L’électrospinogramme évoqué était enregistré au niveau des apophyses épineuses thoraciques et lombosacrées. Le potentiel lombosacré N22 était sélectivement atteint: il était déplacé en position rostrocaudale et son amplitude était réduite et il était absent chez les patients qui avaient des signes neurologiques indiquant une lésion segmentaire basse de la moelle épiniere. La latence interpics des PES était normale chez tous les cas suggérant que les potentiels axonaux ascendants des fibres du faisceau postérieur sont synchronisés. Les potentiels segmentates de la réponse lombosacrée originant de l’activité post-synaptique des neurones intercalaires de la corne postérieure de la moelle sont atteints sélectivement dans ce syndrome dû au déplacement rostrocaudal de la moelle épiniere par fixation caudale. Nos observations cliniques sont en accord avec les données expérimentales indiquant une sensibilité différente de la substance grise et de la substance blanche à retirement progressif.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1994

References

REFERENCES

1. Lassman, LP and James, CCM. Lumbosacral lipomas: critical survey of 26 cases submitted to laminectomy. J Neurol Neurosurg Psychiatry 1967; 30: 174181.CrossRefGoogle ScholarPubMed
2. Dale, AJD. Diastematomyelia. Arch Neurol 1969; 20: 309317.CrossRefGoogle ScholarPubMed
3. Bruce, DA and Schut, L. Spinal lipoma in infancy and childhood. Child’s Brain 1979; 5: 192203.Google Scholar
4. Chehrazy, B and Haldeman, S. Adult onset of tethered spinal cord syndrome due to fibrous diastematomyelia: case report. Neurosurgery 1985; 6: 681685.CrossRefGoogle Scholar
5. Holtzmann, RNN, Stein, BM, eds.: The Tethered Spinal Cord. New York: Thieme-Stratton, 1985.Google Scholar
6. Barolat, G Schaefer, D and Zeme, S. Recurrent spinal cord tethering by sacral nerve root following lipomyelomeningocele surgery. J Neurosurg 1991; 74: 143145.CrossRefGoogle Scholar
7. Fitz, CR. Congenital anomalies of the spine and spinal cord. Computed tomography of head, neck and spine. In: Ratchaw, RE, ed. Chicago, Year Book, 1985: 715736.Google Scholar
8. Merx, JL, Bakker-Niezen, SH, Thijssen, HOM and Walder, HAD. The tethered spinal cord syndrome: a correlation of radiological features and preoperative findings in 30 patients. Neuroradiology 1989; 31:6370.Google Scholar
9. Hendrick, EB, Hoffman, HJ and Humphreys, RP. The tethered spinal cord. Clin Neurosurg 1983; 30: 457463.Google Scholar
10. Pang, D and Wildberger, JE. Tethered cord syndrome in adults. J Neurosurg 1982; 57:3247.Google Scholar
11. Hoffman, HJ. Hendrick, EB and Humphreys, RP. The tethered spinal cord: its protean manifestations, diagnosis and surgical correction. Child’s Brain 1976; 2: 145155.Google Scholar
12. Welch, K and Winston, KR. Spina bifida. In: Myrianthopoulos, NC, ed. Malformations Handbook of Clinical Neurology, Vol 6 (50). Chapter 29. Elsevier Science Publishers B, 1987: 477508.Google Scholar
13. Gasser, HS and Graham, HT. Potentials produced in the spinal cord by stimulation of the dorsal roots. Am J Physiol 1933; 103: 303320.Google Scholar
14. Beall, JE, Applebaum, AE, Foreman, RD and Willis, WD. Spinal cord potentials evoked by cutaneous afferents in the monkey. J Neurophysiol 1977; 40: 199211.Google Scholar
15. Maruyama, Y, Shimoji, K, Shimizu, H, Kuribayashi, H and Fujioka, H. Human spinal cord potentials evoked by different sources of stimulation and conduction velocities along the cord. J Neurophysiol 1982; 48: 10981107.CrossRefGoogle ScholarPubMed
16. Delbecke, J, McComas, AJ and Kopec, SJ. Analysis of evoked lumbosacral potentials in man. J Neurol Neurosurg Psychiatry 1978; 41:293302.Google Scholar
17. Desmedt, JE and Cheron, G. Spinal and far field components of the human somatosensory evoked potentials to posterior tibial nerve stimulation analysis with oesophageal derivations and non-cephalic reference recording. Electroencephalogr Clin Neurophysiol 1983; 56:351361.Google Scholar
18. Cracco, RQ and Cracco, JB. Somatosensory evoked potentials in man: far field potentials. Electroencephalogr. Clin Neurophysiol 1976; 41:460466.Google Scholar
19. Kimura, J, Mitsudome, A, Yamada, T and Dickins, QS. Stationary peaks from a moving source in far field recording. Electroencephalogr Clin Neurophysiol 1984, 58: 351361.Google Scholar
20. Seyal, M and Gabor, AJ. The human posterior tibial somatosensory evoked potential dependent and independent spinal components. Electroencephalogr Clin Neurophysiol 1985; 62: 323331.Google Scholar
21. Yiannikas, C and Shahani, BT. The origin of lumbosacral spinal evoked potentials in humans using a surface electrode recording technique. J Neurol Neurosurg Psychiatry 1988; 51: 499508.CrossRefGoogle ScholarPubMed
22. Jeanmonod, D, Sindou, M and Mauguiere, F. The human cervical and lumbo-sacral evoked electrospinogram. Data from intra-operative spinal cord surface recordings. Electroencephalogr Clin Neurophysiol 1991; 80:477489.CrossRefGoogle ScholarPubMed
23. Roy, MW, Gilmore, R and Walsh, JW. Evaluation of children and young adults with tethered spinal cord syndrome. Surg Neurol 1986; 26:241248.Google Scholar
24. Emerson, RG, Pavlakis, SG, Carmel, PC and De Vivo, DC. Spinal somatosensory evoked potentials in the diagnosis of tethered cord. Ann Neurol 1986; 20: 443.Google Scholar
25. Shinomiya, K, Fuchioka, M, Matsuoka, T, et al. Intraoperative monitoring for tethered spinal cord syndrome. Spine 1991; 16: 12901294.Google Scholar
26. Emerson, RG, Pedley, TA. Effect of cervical spinal cord lesions on early components of the median nerve somatosensory evoked potential. Neurology 1986; 36: 2026.CrossRefGoogle ScholarPubMed
27. Urasaki, E, Wada, S, Kadoya, C, et al. Absence of spinal N13-P13 and normal scalp far-field P14 in a patient with syringomyelia. Electroencephalogr Clin Neurophysiol 1988; 71: 400404.CrossRefGoogle Scholar
28. Ibanez, V, Fischer, G, Mauguiere, F. Dorsal horn and dorsal column dysfunction in intramedullary cervical cord tumor. Brain 1992; 115: 12091234.Google Scholar
29. Schramm, J, Hashizume, K, Fukushima, T and Takahashi, H. Experimental spinal cord injury produced by slow, graded compression (alterations of cortical and spinal evoked potentials). J Neurosurg 1979; 50:4857.Google Scholar
30. Dolan, EJ, Transfeldt, EE, Tator, CH, Simmons, EH and Hughes, KF. The effect of spinal distraction on regional spinal cord blood flow in cats. J Neurosurg 1980; 53: 756764.Google Scholar
31. Cusik, JF, Myklebust, J, Zyvolosky, M, et al. Effects of vertebral column distraction in the monkey. J Neurosurg 1982; 57: 651659.Google Scholar
32. Fujita, Y and Yamamoto, H. An experimental study on spinal cord traction effect. Spine 1989; 14: 698705.CrossRefGoogle Scholar
33. Yamada, S, Zinke, DE and Sanders, D. Pathophysiology of “tethered cord syndrome”. J Neurosurg 1981; 54: 494503.Google Scholar
34. Yashon, D and Beatty, RA. Tethering of the conus medullaris within the sacrum. J Neurol Neurosurg Psychiatry 1966; 29: 244250.Google Scholar