Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-23T19:50:38.088Z Has data issue: false hasContentIssue false

Responsiveness of the Scripps Neurologic Rating Scale During a Multiple Sclerosis Clinical Trial

Published online by Cambridge University Press:  02 December 2014

James A. Koziol
Affiliation:
Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California
Adriana Lucero
Affiliation:
Division of Neurology, Scripps Clinic, La Jolla, California
Jack C. Sipe
Affiliation:
Division of Neurology, Scripps Clinic, La Jolla, California
John S. Romine
Affiliation:
Division of Neurology, Scripps Clinic, La Jolla, California
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

The Scripps neurologic rating scale (SNRS) is a summary measure of individual components comprising a neurological examination, designed for use in multiple sclerosis (MS). Our objective is to evaluate the responsiveness of the SNRS, within the context of a 2-year, randomized, double-blind crossover study of the efficacy of cladribine for treatment of secondary progressive MS.

Methods:

Effect sizes were determined for the SNRS and its components, separately for each treatment group (initial placebo, and initial cladribine) over both years of the clinical trial, using a standard random effects model.

Results:

Individual components tended to show positive effect sizes (improvement) during periods of active therapy in both treatment groups, and negative effect sizes (deterioration) during periods of no active therapy. Summation indices derived from the individual components of the SNRS seemed somewhat more stable than the individual components. The two components mentation and mood, and bladder, bowel, or sexual dysfunction, were rather unresponsive in our clinical trial.

Conclusion:

Changes in the components of the SNRS over the course of our clinical trial were consistent between the two treatment groups. Most components were moderately responsive; and, the summary SNRS score appropriately summarized the moderate magnitudes of change evinced in the individual components.

Résumé

RÉSUMÉObjectif:

L'éelle neurologique de Scripps (ÉS), conç pour êe utilisédans la sclése en plaques (SEP), est une mesure sommaire de composantes individuelles incluant un examen neurologique. L'objectif de l'éde éit d'éluer la sensibilitée l'ÉS dans le contexte d'une éde randomisé en double insu avec chasséroiséde l'efficacitée la cladribine dans le traitement de la SEP secondaire progressive.

Méodes:

L'ampleur des effets a é dérminépour l'ÉS et ses composantes sérént pour chaque groupe de traitement (traitement initial: placebo ou cladribine) au cours des deux ans de l'éde clinique au moyen d'un modè standard àffets aléoires.

Réltats:

Les composantes individuelles tendaient àéntrer des effets positifs (améoration) pendant les péodes de traitement actif dans les deux groupes de traitement et des effets nétifs (dérioration) pendant les péodes sans traitement actif. Les indices de sommation dévédes composantes individuelles de l'ÉS semblaient plus stables que les composantes individuelles. Les deux composantes ét mental et humeur, et dysfonction vécale, intestinale ou sexuelle n'éient pas sensibles lors de cet essai thépeutique.

Conclusions:

Les changements dans les composantes de l'ÉS au cours de cet essai thépeutique éient concordants entre les deux groupes de traitement. La plupart des composantes éient modément sensibles et le score sommaire rémait de faç appropriél'ampleur modée des changements déntrépar les composantes individuelles.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 1999

References

Refeeences

1. Sipe, JC, Romine, JS, Koziol, JA, McMillan, R, Zyroff, J, Beutler, E. Cladribine in treatment of chronic progressive multiple sclerosis. Lancet 1994;344:913.CrossRefGoogle ScholarPubMed
2. Beutler, E, Sipe, JC, Romine, JS, Koziol, JA, McMillan, R, Zyroff, J. The treatment of chronic progressive multiple sclerosis with cladribine. Proc Natl Acad Sci USA 1996;93:17161720.CrossRefGoogle ScholarPubMed
3. Hobart, JC, Lamping, DL, Thompson, AJ. Evaluating neurologicaloutcome measures: the bare essentials. J Neurol Neurosurg Psychiatry 1996;60:127130.CrossRefGoogle Scholar
4. Sipe, JC, Knobler, RL, Braheny, SL, Rice, GP, Panitch, HS, Oldstone, MB. A neurologic rating scale (NRS) for use in multiple sclerosis. Neurology 1984;34:13681372.CrossRefGoogle ScholarPubMed
5. Koziol, JA, Frutos, A, Sipe, JC, Romine, JS, Beutler, E. A comparisonof two neurologic scoring instruments for multiple sclerosis. J Neurol 1996;243:209213.CrossRefGoogle Scholar
6. Whitaker, JN, McFarland, HF, Rudge, R, Reingold, SC. Outcomesassessment in multiple sclerosis clinical trials: a critical analysis. Multiple Sclerosis 1995;1:3747.CrossRefGoogle Scholar
7. Kirshner, B, Guyatt, G. A methodological framework for assessinghealth indices. J Chron Dis 1985;38:2736.CrossRefGoogle ScholarPubMed
8. Laird, NM, Ware, JH. Random effects models for longitudinal data. Biometrics 1982;38:963974.CrossRefGoogle ScholarPubMed
9. Cohen, J. Statistical Power Analysis for the Behavioral Sciences(Rev. Ed.). New York: Academic Press, 1977.Google Scholar
10. Fitzpatrick, R, Ziebland, S, Jenkinson, C, Mowat, A, Mowat, A. Importance of sensitivity to change as a criterion for selectinghealth status measures. Qual Health Care 1992;1:8993.CrossRefGoogle ScholarPubMed
11. Kazis, LE, Anderson, JJ, Meenan, RF. Effect sizes for interpretingchanges in health studies. Med Care 1989;27:S178189.CrossRefGoogle Scholar
12. Deyo, RA, Diehr, P, Patrick, DL. Reproducibility and responsiveness of health status measures. Control Clin Trials 1991;12:142S–158S.CrossRefGoogle ScholarPubMed
13. Guyatt, G, Walter, S, Norman, G. Measuring change over time:assessing the usefulness of evaluative instruments. J Chron Dis 1987;40:171178.CrossRefGoogle ScholarPubMed
14. Statistical Sciences Inc. SPlus User’s Manual, Version 3.0. Seattle: Stat Sci, 1991.Google Scholar
15. Pinheiro, JC, Bates, DM. lme and nlme: mixed effects modelsmethods and classes for S and Splus. Technical report. In: University of Wisconsin: Department of Biostatistics, 1995.Google Scholar
16. Rudick, R, Antel, J, Confavreux, C, et al. Clinical outcomesassessment in multiple sclerosis. Ann Neurol 1996;40:469479.CrossRefGoogle Scholar
17. Noseworthy, JH, Vandervoort, MK, Hopkins, M, Ebers, GC. Areferendum on clinical research in multiple sclerosis : the opinion of the participants in the Jekyll Island workshop. Neurology 1989;39:977981.CrossRefGoogle Scholar
18. Ellison, GW, Myers, LW, Leake, BD, et al. Design strategies inmultiple sclerosis clinical trials. Ann Neurol 1994;36:S108–S112.CrossRefGoogle Scholar
19. Koziol, JA, Hacke, W. Multivariate data reduction by principalcomponents, with application to neurological scoring instruments. J Neurol 1990;237:461464.CrossRefGoogle Scholar
20. Wright, JG, Feinstein, AR. A comparative contrast of clinimetric andpsychometric methods for constructing indexes and rating scales. J Clin Epidemiol 1992;45:12011218.CrossRefGoogle ScholarPubMed