Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T20:48:23.811Z Has data issue: false hasContentIssue false

Recombinant Factor VIIa plus Surgery for Intracerebral Hemorrhage

Published online by Cambridge University Press:  02 December 2014

Christina S. Sutherland
Affiliation:
Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Calgary, AB
Michael D. Hill*
Affiliation:
Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Calgary, AB
Anthony M. Kaufmann
Affiliation:
Section of Neurosurgery, University of Manitoba, Winnipeg, MB, Canada
Joseph A. Silvaggio
Affiliation:
Section of Neurosurgery, University of Manitoba, Winnipeg, MB, Canada
Andrew M. Demchuk
Affiliation:
Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Calgary, AB
Garnette R. Sutherland
Affiliation:
Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Calgary, AB
*
Calgary Stroke Program, Department of Clinical Neurosciences, University of Calgary, Foothills Hospital, Rm 1162, 1403 29th Street NW, Calgary, Alberta, T2N 2T9, Canada.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Hyperacute surgical evacuation of intracerebral hemorrhage is associated with a high rebleeding rate. The peri-operative administration of rFVIIa to patients with intracerebral hemorrhage may decrease the frequency of post-operative hemorrhage, and improve outcome.

Methods:

Patients receiving recombinant activated factor VII (rFVIIA) therapy immediately prior to acute surgery were collected at two centres. The intracerebral hemorrhage (ICH) score and ICH Grading Scale were determined, as was long-term outcome using the modified Rankin Scale. Residual/ recurrent clot was evaluated by comparing pre-operative to post-operative CT scans.

Results:

Fifteen patients with intracerebral hemorrhage received 40-90 μg/kg of rFVIIa and underwent surgical hematoma evacuation at a median time of five hours following symptom onset. Median pre-operative clot volume was 60 ml, decreasing to 2 ml post-operatively. There were no thromboembolic adverse events. Thirteen patients survived, 11 (73%) were independent, and two (13%) had a moderate to severe disability. These outcomes were significantly better than expected based on the median ICH score (40% mortality) and based on median ICH Grading Scale (18% good outcome).

Conclusions:

The pre or peri-operative administration of rFVIIa resulted in minimal residual or recurrent hematoma volume and may be an important adjunct to surgery in patients with intracerebral hemorrhage.

Résumé:

RÉSUMÉ:Contexte:

L°évacuation chirurgicale hyperaigué de l°hémorragie intracérébrale est associée à un taux élevé de resaignement. L” administration de rFVIIa périopératoire chez les patients présentant une hémorragie intracérébrale pourrait diminuer la fréquence des hémorragies postopératoires et améliorer l°issue.

Méthodes:

Les patients ayant reçu du rFVIIa immédiatement avant la chirurgie ont été identifiés dans deux centres. Les scores du ICH et du ICH Grading Scale ont été déterminés de même que l°issue à long terme au moyen du Modified Rankin Scale. Le caillot résiduel ou récurrent a été évalué en comparant les CT scans préopératoires et postopératoires.

Résultats:

Quinze patients ayant présenté une hémorragie intracérébrale ont reçu de 40 à 90 μg/kg de rFVIIa et ont subi une évacuation chirurgicale de l°hématome 5 heures (temps médian) apres le début des symptômes. Le volume médian du caillot avant la chirurgie était de 60 ml et de 2 ml apres la chirurgie. Aucun incident thromboembolique n°a été observé. Treize patients ont survécu dont 11 (73%) étaient indépendants et 2 (13%) avaient une invalidité de modérée à sévère. Ces résultats étaient significativement meilleurs qu°anticipés vu le score médian du ICH (40% de mortalité) et du ICH Grading Scale (l8% de bons résultats).

Conclusions:

Un hématome résiduel ou récurrent dont le volume était minime a été observé suite à l”administration pré ou périopératoire de rFVIIa. Le rFVIIa peut être un traitement d°appoint important à la chirurgie chez les patients présentant une hémorragie intracérébrale.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 2008

References

1. Intiso, D, Stampatore, P, Zarrelli, MM, Guerra, GL, Arpaia, G, Simone, P, et al. Incidence of first-ever ischemic and hemorrhagic stroke in a well-defined community of southern Italy, 1993-1995. Eur J Neurol. 2003;10:55965.Google Scholar
2. Qureshi, AI, Tuhrim, S, Broderick, JP, Batjer, HH, Hondo, H, Hanley, DF. Spontaneous intracerebral hemorrhage. N Engl J Med. 2001;344:145060.Google Scholar
3. Anderson, CS, Chakera, TMH, Stewart-Wynne, EG, Jamrozik, KD. Spectrum of primary intracerebral hemorrhage in Perth, Western Australia, 1989-90: incidence and outcome. J Neurol Neurosurg Psychiatry. 1994;57:93640.Google Scholar
4. Counsell, C, Boonyakarnkul, S, Dennis, M, Sandercock, P, Bamford, J, Burn, J, et al. Primary intracerebral hemorrhage in the Oxfordshire community stroke program. Cerebrovasc Dis. 1995;5:2634.CrossRefGoogle Scholar
5. Daverat, PD, Castel, JP, Dartingues, JF, Orgogozo, JM. Death and functional outcome after spontaneous intracerebral hemorrhage: a prospective study of 166 cases using multivariate analysis. Stroke. 1990;22:16.Google Scholar
6. Indredavik, B, Bakke, F, Solberg, R, Rokseth, R, Haaheim, LL, Holme, I. Benefit of a stroke unit: a randomized controlled trial. Stroke. 1991;22:102631.CrossRefGoogle ScholarPubMed
7. Indredavik, B, Bakke, F, Slørdahl, SA, Rokseth, R, Håheim, LL. Stroke unit treatment improves long-term quality of life: a randomized controlled trial. Stroke. 1998;29:8959.Google Scholar
8. Rønning, OM, Guldvog, B. Stroke unit versus general medical wards, II: neurological deficits and activities of daily living: a quasi-randomized controlled trial. Stroke. 1998;29:58690.Google Scholar
9. Fernandes, HM, Siddique, S, Banister, K, Chambers, I, Wooldridge, T, Gregson, B, et al. Continuous monitoring of ICP and CPP following ICH and its relationship to clinical, radiological and surgical parameters. Acta Neurochir Suppl. 2000;76:4636.Google Scholar
10. Power, C, Henry, S, Del Bigio, MR, Larsen, PH, Corbett, D, Imai, Y, et al. Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol. 2003;53:73142.Google Scholar
11. Siddique, MS, Fernandes, HM, Arene, NU, Wooldridge, TD, Fenwick, JD, Mendelow, AD. Changes in cerebral blood flow as measured by HMPAO SPECT in patients following spontaneous intracerebral hemorrhage. Acta Neurochir Suppl. 2000;76:51720.Google Scholar
12. McKissock, W, Richardson, A, Taylor, J. Primary intracerebral hemorrhage: a controlled trial of surgical and conservative treatment in 180 unselected cases. Lancet. 1961;278:2216.CrossRefGoogle Scholar
13. Auer, LM, Deinsberger, W, Niederkorn, K, Gell, G, Kleinert, R, Schneider, G, et al. Endoscopic surgery versus medical treatment for spontaneous intracerebral hematoma: a randomized study. J Neurosurg. 1989;70:5305.Google Scholar
14. Juvela, S, Heiskanen, O, Poranen, A, Valtonen, S, Kuurne, T, Kaste, M, et al. The treatment of spontaneous intracerebral hemorrhage: a prospective randomized trial of surgical and conservative treatment. J Neurosurg. 1989;70:7558.Google Scholar
15. Batjer, HH, Reisch, JS, Allen, BC, Plaizier, LJ, Su, CJ. Failure of surgery to improve outcome in hypertensive putaminal hemorrhage: a prospective randomized trial. Arch Neurol. 1990;47:11036.Google Scholar
16. Chen, X, Yang, H, Czherig, Z. A prospective randomized trial of surgical and conservative treatment of hypertensive intracranial haemorrhage. Acta Acad Med Shanghai. 1992;19:23740.Google Scholar
17. Morgenstern, LB, Frankowski, RF, Shedden, P, Pasteur, W, Grotta, JC. Surgical treatment for intracerebral hemorrhage (STICH): a single-center, randomized clinical trial. Neurology. 1998;51:135963.Google Scholar
18. Zuccarello, M, Brott, T, Derex, L, Kothari, R, Sauerbeck, L, Tew, J, et al. Early surgical treatment for supratentorial intracerebral hemorrhage: a randomized feasibility study. Stroke. 1999;30:18339.CrossRefGoogle ScholarPubMed
19. Teernstra, OP, Evers, SM, Lodder, J, Leffers, P, Franke, CL, Blaauw, G. Stereotactic treatment of intracerebral hematoma by means of a plasminogen activator: a multicenter randomized controlled trial (SICHPA). Stroke. 2003;34:96874.Google Scholar
20. Mendelow, AD, Gregson, BA, Fernandes, HM, Murray, GD, Teasdale, GM, Hope, DT, et al. Early surgery versus initial conservative treatment in patients with spontaneous supratentorial intracerebral hematomas in the International Surgical Trial in Intracerebral Hemorrhage (STICH): a randomised trial. Lancet. 2005;365:38797.Google Scholar
21. Hankey, GJ, Hon, C. Surgery for primary intracerebral hemorrhage: is it safe and effective? Stroke. 1997;28:212632.Google Scholar
22. Fernandes, HM, Gregson, B, Siddique, S, Mendelow, AD. Surgery in intracerebral hemorrhage: the uncertainty continues. Stroke. 2000;31:25116.CrossRefGoogle ScholarPubMed
23. Mendelow, AD, Unterberg, A. Surgical treatment of intracerebral hemorrhage. Curr Opin Crit Care. 2007;13:16974.CrossRefGoogle Scholar
24. Morgenstern, LB, Demchuk, AM, Kim, DH, Frankowski, RF, Grotta, JC. Rebleeding leads to poor outcome in ultra-early craniotomy for intracerebral hemorrhage. Neurology. 2001;56:12949.Google Scholar
25. Auer, RN, Sutherland, GR. Primary intracerebral hemorrhage: pathophysiology. Can J Neurol Sci. 2005;Suppl 2:S3S12.Google ScholarPubMed
26. Brott, T, Broderick, J, Kothari, R, Barsan, W, Tomsick, T, Sauerbeck, L, et al. Early hemorrhage growth in patients with intracerebral hemorrhage. Stroke. 1996;28:15.Google Scholar
27. Davis, SM, Broderick, J, Hennerici, M, Brun, NC, Diringer, MN, Mayer, SA, et al. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage. Neurology. 2006;66:117581.Google Scholar
28. Broderick, JP, Brott, T, Duldner, JE, Tomsick, T, Huster, G. Volume of intracerebral hemorrhage: a powerful and easy to use predictor of 30-day mortality. Stroke. 1993;24:98793.Google Scholar
29. Mayer, SA, Brun, NC, Begtrup, K, Broderick, J, Davis, S, Diringer, MN, et al. Recombinant activated factor VII for acute intracerebral hemorrhage. N Engl J Med. 2005;352:77785.CrossRefGoogle ScholarPubMed
30. Mayer, SA, Brun, NC, Begtrup, K, Broderick, JP, Davis, SM, Diringer, MN, et al. Randomized, placebo-controlled, double-blind phase III study to assess rFVIIa efficacy in acute intracerebral hemorrhage: the fast trial (abstract). Cerebrovasc Dis. 2007;23 Suppl 2:10.Google Scholar
31. Kothari, RU, Brott, T, Broderick, JP, Barsan, WG, Sauerbeck, LR, Zuccarello, M, et al. The ABCs of measuring intracerebral hemorrhage volumes. Stroke. 1996;27:13045.Google Scholar
32. Ruiz-Sandoval, JL, Chiquete, E, Romero-Vargas, S, Padilla-Martínez, JJ, González Cornejo, S. Grading scale for prediction of outcome in primary intracerebral hemorrhages. Stroke. 2007;38:16414.Google Scholar
33. Lindley, CM, Sawyer, WT, Macik, BG, Lusher, J, Harrison, JF, Baird-Cox, K, et al. Pharmacokinetics and pharmacodynamics of recombinant factor VIIa. Clin Pharmacol Ther. 1994;55:63848.Google Scholar
34. Monroe, DM, Hoffman, M, Oliver, JA, Roberts, HR. Platelet activity of high-dose factor VIIa is independent of tissue factor. BJH. 1997;99:5427.Google Scholar
35. Rådberg, JA, Olsson, JE, Rådberg, CT. Prognostic parameters in spontaneous intracerebral hematomas with special reference to anticoagulant treatment. Stroke. 1991;22:5716.CrossRefGoogle ScholarPubMed
36. Fujii, Y, Tanaka, R, Takeuchi, S, Koike, T, Minakawa, T, Sasaki, O. Hematoma enlargement in spontaneous intracerebral hemorrhage. J Neurosurg. 1994;80:517.Google Scholar
37. Kazui, S, Naritomi, H, Yamamoto, H, Sawada, T, Yamaguchi, T. Enlargement of spontaneous intracerebral hemorrhage: incidence and time course. Stroke. 1996;27:17837.Google Scholar
38. Becker, KJ, Baxter, AB, Bybee, HM, Tirschwell, DL, Abouelsaad, T, Cohen, WA. Extravasation of radiographic contrast is an independent predictor of death in primary intracerebral hemorrhage. Stroke. 1999;30:202532.Google Scholar
39. Wada, R, Aviv, RI, Fox, AJ, Sahlas, DJ, Gladstone, DJ, Tomilson, G, et al. CT angiography “spot sign” predicts hematoma expansion in acute intracerebral hemorrhage. Stroke. 2007;38:125762.Google Scholar