Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T06:04:09.322Z Has data issue: false hasContentIssue false

Progress in Clinical Neurosciences: Frontotemporal Dementia-Pick's Disease

Published online by Cambridge University Press:  02 December 2014

Andrew Kertesz*
Affiliation:
Department of Clinical Neurological Sciences, St. Joseph's Hospital, University of Western Ontario, London, Ontario, Canada
*
Department of Clinical Neurological Sciences, St. Joseph’s Hospital, University of Western Ontario, London, Ontario, N6A 4V2, Canada.
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Frontotemporal dementia (clinical Pick's disease) is a relatively common, but underdiagnosed degenerative disease in the presenium. Estimated prevalence ranges from 6-12% of dementias. The behavioural, aphasic and extrapyramidal presentations are labeled FTD-behavioural variant, Primary Progressive Aphasia (PPA) and Corticobasal Degeneration/Progressive Supranuclear Palsy (CBD/PSP). The diagnostic features and course of each are described and their overlap in the evolution of the illness is emphasized. The neuropathology ranges from the most common tau negative ubiquitin positive amyotrophic lateral sclerosis (ALS) type inclusions to the tau positive classical Pick bodies and more or less distinct changes of PSP and CBD. The genetics of the relatively frequent tau mutations and the yet unsolved problem of tau negative families are discussed. The tau negative cases tend to be associated with the behavioural presentation and semantic dementia and the tau positive ones with PPA and the CBD/PSP syndrome. However the overlap is too great to split the disease. A glossary to navigate the proliferating terminology is included.

Résumé:

RÉSUMÉ:

La démence fronto-temporale (DFT - maladie Clinique de Pick) estunemaladierelativementfréquente mais sous-diagnostiquée chez les patients préséniles Sa prévalence serait de 6 à 12% chez les patients atteints de démence. Les manifestations comportementales, aphasiques et extrapyramidalessontconsidérées comme des variantescomportementales de la DFT, de l’aphasie progressive primaire (APP) et de la dégénérescence cortico-basale (DCB)/paralysiesupranucléaire progressive (PSP). Nous décrivons les manifestations diagnostiques et l’évolution de chacune et nous soulignonsleurchevauchement au cour de l’évolution de la maladie. La neuropathologievarie de la forme la plus fréquente qui est la présence d’inclusions de type DLA ubiquitine positives tau négatives, aux corps de Pick classiques tau positifs et aux changements plus oumoinsdistincts de la PSP et de la DCB. Nous discutons des aspects génétiques des mutations relativementfréquentes de la protéine tau et du problème non résolu des familles qui ne sont pas porteuses de mutations de cetteprotéine. Les cas tau négatifs sont en général associés à des manifestations comportementales et à une démence sémantique et les cas tau positifsà l’APP et au syndrome DCB/PSP. Cependant, le chevauchementest trop considérable pour en faire différentes entités. Nous ajoutons un glossaireafin de définir uneterminologie enexpansion.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2006

References

1. Pick, A. Über die Beziehungen der senilen Hirnatrophie zur Aphasie. Prag Med Wochenschr. 1892;17:1657.Google Scholar
2. Alzheimer, A. Über eigenartige Krankheitsfälle des späteren Alters. Z Gesamte Neurol Psychiatr. 1911;4:35685.Google Scholar
3. Onari, K, Spatz, H. Anatomische Beitrage zur Lehre von der Pickschen umschriebenen Grosshirnrinden-Atrophie (“Picksche Krankheit”). Z Gesamte Neurol Psych. 1926;101:470511.Google Scholar
4. Constantinidis, J, Richard, J, Tissot, R. Pick’s disease - histological and clinical correlations. Eur Neurol. 1974;11:20817.Google Scholar
5. Brun, A. Frontal lobe degeneration of non-Alzheimer type. I. Neuropathology. Arch Gerontol Geriatr. 1987;6:193208.CrossRefGoogle ScholarPubMed
6. Neary, D, Snowden, JS, Northen, B, Goulding, P. Dementia of frontal lobe type. J Neurol Neurosurg Psychiatry. 1988;51:35361.Google Scholar
7. Hodges, JR, Davis, P, Xuereb, J, Casey, B, Broe, M, Bak, T, et al. Clinicopathological correlates in frontotemporal dementia. Ann Neurol. 2004;56:399406.Google Scholar
8. Snowden, JS, Neary, D, Mann, DMA. Fronto-Temporal Lobar Degeneration: Fronto-temporal Dementia, Progressive Aphasia, Semantic Dementia. London: Churchill Livingstone, 1996.Google Scholar
9. Brun, A, Englund, B, Gustafson, L, Passant, U, Mann, DMA, Neary, D, et al. Clinical and neuropathological criteria for frontotemporal dementia. J Neurol Neurosurg Psychiatry. 1994;57:4168.Google Scholar
10. Kertesz, A, Munoz, DG. Pick’s disease and Pick complex. New York: Wiley-Liss, Inc., 1998.Google Scholar
11. Kertesz, A, Hillis, A, Munoz, DG. Frontotemporal dementia and Pick’s disease. Ann Neurol. 2003;54 Suppl 5:S1S35.Google Scholar
12. Lopez, OL, Gonzalez, MP, Becker, JT, Reynolds, CF, Sudilovsky, A, DeKosky, ST. Symptoms of depression and psychosis in Alzheimer’s disease and frontotemporal dementia. Neuropsychiatry Neuropsychol Behav Neurol. 1996;9:15461.Google Scholar
13. Gregory, CA, Hodges, JR. Frontotemporal dementia: use of consensus criteria and prevalence of psychiatric features. Neuropsychiatry Neuropsychol Behav Neurol. 1996;9:14553.Google Scholar
14. Cummings, JL, Duchen, LW. Kluver-Bucy Syndrome in Pick disease: clinical and pathologic correlations. Neurology. 1981; 31:141522.Google Scholar
15. Miller, BL, Cummings, JL, Villanueva-Meyer, J, Boone, K, Mehringer, CM, Lesser, IM, et al. Frontal lobe degeneration: Clinical, neuropsychological, and SPECT characteristics. Neurology. 1991;41:137482.CrossRefGoogle ScholarPubMed
16. Elfgren, C, Brun, A, Gustafson, L, Johanson, A, Minthon, L, Passant, U, et al. Neuropsychological tests as discriminators between dementia of Alzheimer type and frontotemporal dementia. Int J Geriatr Psychiatry. 1994;9:63542.Google Scholar
17. Hodges, JR, Garrard, P, Perry, R, Patterson, K, Ward, R, Bak, T, et al. The differentiation of semantic dementia and frontal lobe dementia (temporal and frontal variants of frontotemporal dementia) from early Alzheimer’s disease a comparative neuropsychological study. Neuropsychology. 1999;13:3140.Google Scholar
18. Kertesz, A, Davidson, W, Fox, H. Frontal behavioral inventory: diagnostic criteria for frontal lobe dementia. Can J Neurol Sci. 1997;24:2936.Google Scholar
19. Kertesz, A, Davidson, W, McCabe, P, Munoz, D. Behavioral quantitation is more sensitive than cognitive testing in frontotemporal dementia. Alzheimer Dis Assoc Disord. 2003;Oct-Dec;17(4): 2239.Google Scholar
20. Mesulam, M-M. Slowly progressive aphasia without generalized dementia. Ann Neurol. 1982;11:5928.Google Scholar
21. Mesulam, M-M. Primary progressive aphasia - differentiation from Alzheimer’s disease. Ann Neurol. 1987;22:5334.Google Scholar
22. Holland, AL, McBurney, DH, Moossy, J, Reinmuth, OM. The dissolution of language in Pick’s disease with neurofibrillary tangles: a case study. Brain Lang. 1985;24:3658.Google Scholar
23. Wechsler, AF, Verity, A, Rosenstein, LD, Fried, I, Scheibel, AB. Pick’s disease: a clinical, computed tomographic, and histologic study with Golgi impregnation observations. Arch Neurol. 1982;39:28790.Google Scholar
24. Kirshner, HS, Tanridag, O, Thurman, L, Whetsell, WO Jr. Progressive aphasia without dementia: two cases with focal spongiform degeneration. Ann Neurol. 1987;22:52732.Google Scholar
25. Turner, RS, Kenyon, LC, Trojanowski, JQ, Gonatas, N, Grossman, M. Clinical, neuroimaging, and pathologic features of progressive nonfluent aphasia. Ann Neurol. 1996;39:16673.Google Scholar
26. Cohen, L, Benoit, N, Van Eeckhout, P, Ducarne, B, Brunet, P. Pure progressive aphemia. J Neurol Neurosurg Psychiatry. 1993; 56:9234.Google Scholar
27. Mesulam, MM, Weintraub, S. Primary progressive aphasia: sharpening the focus on a clinical syndrome. In: Boller, F, Forette, F, Khachaturian, Z, Poncet, M, Christen, Y, editors. Heterogeneity of Alzheimer’s disease. Berlin: Springer-Verlag; 1992. p.4366.Google Scholar
28. Karbe, H, Kertesz, A, Polk, M. Profiles of language impairment in primary progressive aphasia. Arch Neurol. 1993;50:193201.Google Scholar
29. Weintraub, S, Rubin, NP, Mesulam, M-M. Primary progressive aphasia: longitudinal course, neuropsychological profile, and language features. Arch Neurol. 1990;47:132935.Google Scholar
30. Kertesz, A, Davidson, W, McCabe, P, Takagi, K, Munoz, D. Primary progressive aphasia diagnosis, varieties, evolution. J Int Neuropsychol Soc. 2003;9:7109.Google Scholar
31. Fukui, T, Sugita, K, Kawamura, M, Shiota, J, Nakano, I. Primary progressive apraxia in Pick’s disease: a clinicopathologic study. Neurology. 1996;47:46773.Google Scholar
32. Appell, J, Kertesz, A, Fisman, M. A study of language functioning in Alzheimer patients. Brain Lang. 1982;17:7391.Google Scholar
33. Snowden, JS, Goulding, PJ, Neary, D. Semantic dementia: a form of circumscribed cerebral atrophy. Behav Neurol. 1989;2:16782.Google Scholar
34. Hodges, JR, Patterson, K, Oxbury, S, Funnell, E. Semantic dementia: Progressive fluent aphasia with temporal lobe atrophy. Brain. 1992;115:1783806.Google Scholar
35. Head, H. Aphasia and kindred disorders of speech. 1926. Cambridge: Cambridge University Press; 1926.Google Scholar
36. Snowden, JS, Griffiths, H, Neary, D. Semantic dementia: autobiographical contribution to preservation of meaning. Cog Neuropsychol. 1994;11:26588.Google Scholar
37. Akelaitis, AJ. Atrophy of basal ganglia in Pick’s disease. A clinicopathologic study. Arch Neurol Psychiatr. 1944;51:2734.Google Scholar
38. Winkelman, NW, Book, MH. Asymptomatic extrapyramidal involvement in Pick’s disease. Arch Neurol Psychiatr. 1944; 8:3042.Google Scholar
39. Munoz-Garcia, D, Ludwin, SK. Classic and generalized variants of Pick’s disease: clinicopathological, ultrastructural, and immunocytochemical comparative study. Ann Neurol. 1984;16:46780.Google Scholar
40. Rebeiz, JJ, Kolodny, EH, Richardson, EP Jr. Corticodentatonigral degeneration with neuronal achromasia. Arch Neurol. 1968;18:2033.Google Scholar
41. Gibb, WRG, Luthert, PJ, Marsden, CD. Corticobasal degeneration. Brain. 1989;112:117192.Google Scholar
42. Riley, DE, Lang, AE, Lewis, MB, Resch, L, Ashby, P, Hornykiewicz, O, et al. Cortical-basal ganglionic degeneration. Neurology. 1990; 40:120312.Google Scholar
43. Feany, MB, Dickson, DW. Neurodegenerative disorders with extensive Tau pathology: a comparative study and review. Ann Neurol. 1996;40:139148.Google Scholar
44. Kertesz, A, Martinez-Lage, P, Davidson, W, Munoz, DG. The corticobasal degeneration syndrome overlaps progressive aphasia and frontotemporal dementia. Neurology 2000;55:136875.Google Scholar
45. Lang, AE, Bergeron, C, Pollanen, MS, Ashby, P. Parietal Pick’s disease mimicking cortical-basal degeneration. Neurology. 1992; 44:143640.Google Scholar
46. Lippa, CF, Smith, TW, Fontneau, N. Corticonigral degeneration with neuronal achromasia. A clinicopathological study of two cases. J Neurol Sci. 1990;98:30110.Google Scholar
47. Kertesz, A, Munoz, DG. Pick’s Disease and Pick Complex. New York: Wiley-Liss, Inc; 1998.Google Scholar
48. Schneider, JA, Watts, RL, Gearing, M, Brewer, RP, Mirra, SS. Corticobasal degeneration: neuropathologic and clinical heterogeneity. Neurology. 1997;48:95969.Google Scholar
49. Grimes, DA, Lang, AE, Bergeron, CB. Dementia as the most common presentation of corticobasal ganglionic degeneration. Neurology. 1999;53:196974.Google Scholar
50. Steele, JC, Richardson, JC, Olszewski, J. Progressive supranuclear palsy. Arch Neurol. 1964;10:33359.Google Scholar
51. Pillon, B, Blin, J, Vidailhet, M, Deweer, B, Sirigu, A, Dubois, B, et al. The neuropsychological pattern of corticobasal degeneration: comparison with progressive supranuclear palsy and Alzheimer’s disease. Neurology. 1995;45:147783.Google Scholar
52. Litvan, I, Goetz, C, Lang, A. Corticobasal degeneration and related disorders. Advances in Neurology. Philadelphia: Lippincott, Williams & Wilkins; 2000.Google Scholar
53. Houlden, H, Baker, M, Morris, HR, MacDonald, N, Pickering-Brown, S, Adamson, J, et al. Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology. 2001;56:17026.Google Scholar
54. Poorkaj, P, Muma, NA, Zhukareva, V, Cochran, EJ, Shannon, KM, Hurtig, H, et al. An R5L t mutation in a subject with a progressive supranuclear palsy phenotype. Ann Neurol. 2002;52:5116.Google Scholar
55. Dickson, D, Bergeron, C, Chin, SS, Duychaerts, C, Horoupian, D, Ikeda, K, et al. Office of rare diseases neuropathologic criteria for corticobasal degeneration. J Neuropathol Exp Neurol. 2002;61:93546.Google Scholar
56. Mitsuyama, Y. Presenile dementia with motor neuron disease in Japan: Clinicopathological review of 26 cases. J Neurol Neurosurg Psychiatry. 1984;47:9539.Google Scholar
57. Neary, D, Snowden, JS, Mann, DMA, Northen, B, Goulding, PJ, Macdermott, N. Frontal lobe dementia and motor neuron disease. J Neurol Neurosurg Psychiatry. 1990;53:2332.CrossRefGoogle ScholarPubMed
58. Okamoto, K, Hirai, S, Yamazaki, T, Sun, X, Nakazato, Y. New ubiquitin-positive intraneuronal inclusions in the extra-motor cortices in patients with amyotrophic lateral sclerosis. Neurosci Lett. 1991;129:2336.Google Scholar
59. Jackson, M, Lennox, G, Lowe, J. Motor neurone disease-inclusion dementia. Neurodegeneration. 1996;5:33950.Google Scholar
60. Lomen-Hoerth, C, Anderson, T, Miller, B. The overlap of amyotrophic lateral sclerosis and frontotemporal dementia. Neurology. 2002;59:10779.Google Scholar
61. Strong, MJ, Lomen-Hoerth, C, Caselli, RJ, Bigio, EH, Yang, W. Cognitive impairment, frontotemporal dementia, and the motor neuron diseases. Ann Neurol. 2003;54. Suppl 5:S203.CrossRefGoogle ScholarPubMed
62. Caselli, RJ, Windebank, AJ, Petersen, RC, Kormori, T, Parisi, JE, Okazaki, H, et al. Rapidly progressive aphasic dementia and motor neuron disease. Ann Neurol. 1993;33:2007.Google Scholar
63. Kertesz, A, Kawarai, T, Rogaeva, E, St. George-Hyslop, PH, Poorkaj, P, Bird, TD, et al. Familial frontotemporal dementia with ubiquitin-positive, tau-negative inclusions. Neurology. 2000;54:81827.Google Scholar
64. Woulfe, J, Kertesz, A, Munoz, DG. Frontotemporal dementia with ubiquintinated cytoplasmic and intranuclear inclusions. Acta Neuropathol. 2001;102:94102.Google Scholar
65. Munoz, DG, Dickson, DW, Bergeron, C, Mackenzie, IRA, Delacourte, A, Zhukareva, V. The neuropathy and biochemistry of frontotemporal dementia. Ann Neurol. 2003;54 Suppl 5:S2428.Google Scholar
66. Hodges, JR, Davis, R, Xuereb, J, Casey, B, Broe, M, Bak, T, et al. Clinicopathological correlates in frontotemporal dementia. Ann Neurol. 2004;56:399406.Google Scholar
67. Kertesz, A, Blair, M, Davidson, W, McMonagle, P, Munoz, DG. The evolution and pathology of frontotemporal dementia. Brain. 2005;128:19962005.Google Scholar
68. Knopman, DS, Mastri, AR, Frey, WH, Sung, JH, Rustan, T. Dementia lacking distinctive histologic features: a common non-Alzheimer degenerative dementia. Neurology. 1990;40:2516.Google Scholar
69. Feany, MB, Mattiace, LA, Dickson, DW. Neuropathological overlap of progressive supranuclear palsy, Pick’s disease and corticobasal degeneration. J Neuropathol and Exp Neurol. 1996;55:5367.Google Scholar
70. Neumann, MA. Pick’s disease. J Neuropathol Exp Neurol. 1949;8:25582.Google Scholar
71. Delacourte, A, Sergeant, N, Wattez, A, Robitaille, Y. The biochemistry of the cytoskeleton in Pick complex. In: Kertesz, A, Munoz, DG, editors. Pick’s disease and Pick complex. New York: Wiley-Liss, Inc; 1998:p.24358.Google Scholar
72. Zhukareva, V, Mann, D, Pickering-Brown, S, Urya, K, Shuck, T, Shah, K, et al. Sporadic Pick’s disease: A tauopathy characterized by a spectrum of pathological tau isoforms in gray and white matter. Ann Neurol. 2002;51:7309.Google Scholar
73. Spillantini, MG, Crowther, RA, Kamphorst, W, Heutink, P, Van Swieten, JC. Tau pathology in two Dutch families with mutations in the microtuble-binding region of tau. Am J Pathol. 1998;153:135963.Google Scholar
74. Zhukareva, V, Vogelsberg-Ragaglia, V, Van Deerlin, V, Bruce, J, Shuck, T, Grossman, M, et al. Loss of brain tau defines novel sporadic and familial tauopathies with frontotemporal dementia. Ann Neurol. 2001;49:16575.Google Scholar
75. Paulus, W, Selim, M. Corticonigral degeneration with neuronal achromasia and basal neurofibrillary tangles. Acta Neuropathol. 1990;81:8994.Google Scholar
76. Wilhelmsen, KC, Lynch, T, Pavlou, E, Higgins, M, Nygaard, TG. Localization of disinhibition dementia parkinsonism amyotrophy complex to 17q21-22. Am J Hum Genet. 1994;55:115965.Google Scholar
77. Lynch, T, Sano, M, Marder, KS, Bell, KL, Foster, NC, Defendini, RF, et al. Clinical characteristics of a family with chromosome 17-linked disinhibition-dementia-parkinsonism-amyotrophy complex. Neurology. 1994; 44:187884.Google Scholar
78. Foster, NL, Wilhelmsen, K, Sima, AFA, Jones, MZ, Di’Amato, CJ, Gilman, S, et al. Frontotemporal dementia and Parkinsonism linked to chromosome 17: a consensus conference. Ann Neurol. 1997;41:70615.Google Scholar
79. Hutton, M, Lendon, CL, Rizzu, P, Baker, M, Froelich, S, Houlden, H, et al. Association of missense and 5’-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998;393:7025.Google Scholar
80. Clark, LN, Poorkaj, P, Wszolek, Z, Geschwind, DH, Nasreddine, ZS, Miller, B, et al. Pathogenic implications of mutations in the tau gene in pallidoponto-nigral degeneration and related neurodegenerative disorders linked to chromosome 17. Proc Natl Acad Sci. 1998;95:131037.Google Scholar
81. Bird, TD, Nochlin, D, Poorkaj, P, Cherrier, M, Kaye, J, Payami, H, et al. A clinical pathological comparison of three families with frontotemporal dementia and identical mutations in the tau gene (P301L). Brain. 1999;122:74156.Google Scholar
82. Hughes, A, Mann, D, Pickering-Brown, S. Tau haplotype frequency in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Exp Neurol. 2003;181:126.Google Scholar
83. Brown, J, Ashworth, A, Gydesen, S, Sorensen, A, Rossor, M, Hardy, J, et al. Familial non-specific dementia maps to chromosome 3. Hum Mol Genet. 1995;4:16258.Google Scholar
84. Hosler, BA, Siddique, T, Sapp, PC, Sailor, W, Huang, MC, Hossain, A, et al. Linkage of familial amotrophic lateral sclerosis with frontotemporal dementia to chromosome 9q21-q22. JAMA. 2000;284:16649.Google Scholar
85. Yates, CM, Simpson, J, Maloney, AFJ, Gordon, A. Neurochemical observations in a case of Pick’s disease. Neurol Sci. 1980;48:25763.Google Scholar
86. Hansen, LA, DeTeresa, R, Tobias, H, Alford, M, Terry, RD. Neocortical morphometry and cholinergic neurochemistry in Pick’s disease. Am J Pathol. 1988;131:50718.Google ScholarPubMed
87. Sparks, DL, Markesbery, WR. Altered serotonergic and cholinergic synaptic markers in Pick’s disease. Arch Neurol. 1991;48:7969.Google Scholar
88. Swartz, JR, Miller, BL, Lesser, IM, Darby, AL. Frontotemporal dementia: Treatment response to serotonin selective reuptake inhibitors. J Clin Psychiatry. 1997;58:2126.Google Scholar
89. Lebert, F, Pasquier, F. Trazodone in the treatment of behaviour in frontotemporal dementia. Hum Psychol Pharmacol Clin Exp. 1999;14:27981.Google Scholar
90. Moretti, R, Torre, P, Antonello, RM, Cattaruzza, T, Cazzato, G, Bava, A. Rivastigmine in frontotemporal dementia: an open-label study. Drugs Aging. 2004;21(14):9317.Google Scholar
91. Kertesz, A, Blair, M, Davidson, W, Light, M, Morlog, D, Brashear, R. A pilot study of the safety and efficacy of Galantamine for Pick/Complex/Frontotemporal Dementia. 130 Meeting of the American Neurological Association. San Diego, CA, September 25, 2005.Google Scholar
92. Coull, J, Sahakian, B, Hodges, J. The a antagonist idazoxan remediates certain attentional and executive dysfunction in patients with dementia of frontal type. Psychopharmacology. 1996;123:23949.Google Scholar
93. Ratnavalli, E, Brayne, C, Dawson, K, Hodges, JR. The prevalence of frontotemporal dementia. Neurology. 2002;58:161521.Google Scholar
94. Bird, T, Knopman, D, van Swieten, J, et al. Epidemiology and genetics of frontotemporal dementia/Pick’s disease. Ann Neurol. 2003;54 Suppl 5:S29S31.CrossRefGoogle ScholarPubMed