Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-23T19:48:26.941Z Has data issue: false hasContentIssue false

Prognostic Value of Evoked Responses and Event-Related Brain Potentials in

Published online by Cambridge University Press:  02 December 2014

Jing Tian Wang
Affiliation:
Cognitive Electrophysiology Laboratory, New York State Psychiatric Institute, New York, USA and the Cognitive/Clinical Neuroscience Unit, Department of Psychology, Life Science Center, Dalhousie University, Halifax, NS, Canada
G. Bryan Young
Affiliation:
Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada
John F. Connolly
Affiliation:
Cognitive/Clinical Neuroscience Unit, Department of Psychology, Life Science Center, Dalhousie University, Halifax, NS and the Departments of Psychiatry, Medicine (Neurology) & Pediatrics, Dalhousie University, Halifax, NS, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The behaviourally unresponsive patient, unable to exhibit the presence of cognition, constitutes a conundrum for health care specialists. Prognostic uncertainty impedes accurate management decisions and the application of ethical principles. An early, reliable prognosis is highly desirable. In this review investigations studying comatose patients with coma of different etiologies were selected. It is concluded that objective prognostication is enhanced by the use of electrophysiological tests. Persistent abnormalities of brainstem auditory evoked potentials and short-latency somatosensory evoked potentials reliably indicate the likelihood of irreversible neurological deficit or death. Meanwhile, the presence of “cognitive” event-related brain potentials (e.g., P300 and mismatch negativity) reflects the functional integrity of higher level information processing and, therefore, the likelihood of capacity for cognition. An approach that combines clinical and electrophysiological values provides optimal prediction of outcome and level of disability.

Type
Other
Copyright
Copyright © The Canadian Journal of Neurological 2004

References

1. D’Arcy, RCN, Marchand, Y, Eskes, G, et al. Evoked potential assessment of language function following stroke. Clin Neurophysiol 2003; 114: 662672.CrossRefGoogle ScholarPubMed
2. Goodwin, SR, Friedman, WA, Bellefleur, M. Is it time to use evoked potentials to predict outcome in comatose children and adults. Crit Care Med 1991; 19(4):518524.CrossRefGoogle ScholarPubMed
3. Näätänen, R. Attention and Brain function. Erlbaum, Hillsdale, NJ, 1992.Google Scholar
4. Rowley, G, Fielding, K. Reliability and accuracy of the Glasgow Coma Scale with experienced and inexperienced users. Lancet 1991; 337: 537538.Google Scholar
5. Jorgenson, EO, Holm, S. The natural course of neurological recovery following cardiopulmonary resuscitation. Resuscitation 1998; 36: 111122.CrossRefGoogle Scholar
6. Cant, BR, Hume, AL, Judson, JA, et al. The assessment of severe head injury by short latency somatosensory and brainstem auditory evoked potentials. Electroencephalogr Clin Neurophysiol 1986; 65: 188195.Google Scholar
7. Karnaze, DS, Weiner, JM, Marshall, LF. Auditory evoked potentials in coma after closed head injury: a clinical-neurophysiologic coma scale for predicting outcome. Neurology 1985; 35: 11221126.CrossRefGoogle ScholarPubMed
8. Lindsay, KW, Pasaoglu, A, Hirst, D, et al. Somatosensory and auditory brainstem conduction after head injury: a comparison with clinical features in prediction of outcome. Neurosurgery 1990; 26(2): 278285.CrossRefGoogle ScholarPubMed
9. Lindsay, K, Teasdale, G, Knill-Jones, R. Observer variability in assessing the clinical features of subarachnoid hemorrhage. J Neurosurg 1983; 58: 5762.Google Scholar
10. Goldberg, G, Karazim, E. Application of evoked potentials to the prediction of discharge status in minimally responsive patients: a pilot study. J Head Trauma Rehab 1998; 13(1): 5168.Google Scholar
11. Jennett, B, Teasdale, G, Braakman, R, et al. Prognosis of patients with severe head injury. Neurosurgery 1979; 4:283288.Google Scholar
12. Barnes, MP. Outcome of head injury. Curr Opin Neurol Neurosurg 1991; 4: 1216.Google Scholar
13. Bates, D. Coma and brain death. Curr Opin Neurol Neurosurg 1991; 4: 1720.Google Scholar
14. Haupt, WF, Hojer, C, Pawlik, G. Prognostic value of evoked potentials and clinical grading in primary subarachnoid haemorrhage. Acta Neurochir (Wien), 1995; 137: 146150.Google Scholar
15. Fischer, C, Morlet, D, Giard, MH. Mismatch nagativity and N100 in comatose patients. Audiol Neurootol 2000; 5: 192197.CrossRefGoogle ScholarPubMed
16. Garcia-Larrea, L, Artru, F, Bertrand, O, et al. The combined monitoring of brainstem auditory evoked potentials and intracranial pressure in coma. A study of 57 patients. J Neurol Neurosurg Psychiatry 1992; 55: 792798.Google Scholar
17. Butinar, D, Gostisa, A. Brainstem auditory evoked potentials and somatosensory evoked potentials in prediction of post-traumatic coma in children. Pflugers Arch 1996; 431(Suppl): R289R290.Google Scholar
18. Facco, E, Giron, GP. Multimodality evoked potentials in coma and brain death. Minerva Anestesiol 1994; 60: 595599.Google Scholar
19. Rothstein, TL, Thomas, EM, Sumi, SM. Predicting outcome in hypoxic-ischemic coma. A prospective clinical and electrophysiologic study. Electroencephalogr Clin Neurophysiol 1991; 79(2): 101107.CrossRefGoogle Scholar
20. Chiappa, KH, Hill, RA. Evaluation and prognostication in coma. Electroencephalogr Clin Neurophysiol 1998; 106: 149155.Google Scholar
21. Enevoldsen, EM, Cold, G, Jensen, FT, et al. Dynamic changes in regional CBF, intraventricular pressure, CSF pH and lactate levels during the acute phase of head injury. J Neurosurg 1977; 47: 503.Google Scholar
22. Walser, H, Mattle, H, Keller, HM, et al. Early cortical median nerve somatosensory evoked potentials. Prognostic value in anoxic coma. Arch Neurol 1985; 42: 3238.Google Scholar
23. Brunko, E, Zegers De Beyl, D. Prognostic value of early cortical somatosensory evoked potentials after resuscitation from cardiac arrest. Electroencephalogr Clin Neurophysiol 1987; 66(1): 1524.Google Scholar
24. Logi, F, Fischer, C, Murri, L, Mauguiere, F. The prognostic value of evoked responses from primary somatosensory and auditory cortex in comatose patients. Clin Neurophysiol 2003; 114: 16151627.Google Scholar
25. Sherman, AL, Tirschwell, DL, Micklesen, PJ, Longstreth, WT Jr, Robinson, LR. Somatosensory potentials, CSF creatine kinase BB activity, and awakening after cardiac arrest. Neurology 2000; 54: 889894.CrossRefGoogle ScholarPubMed
26. Madl, C, Kramer, L, Domanovits, H, et al. Improved outcome prediction in unconscious cardiac arrest survivors with sensory evoked potentials compared with clinical assessment. Crit Care Med 2000; 28: 721726.Google Scholar
27. Berek, K, Lechleitner, P, Luef, G, et al. Early determination of neurological outcome after prehospital cardiopulmonary resuscitation. Stroke 1995; 26: 543549.Google Scholar
28. Levy, DE, Coronna, JJ, Singer, BH, et al. Predicting outcome from hypoxic-ischemic coma. JAMA 1985; 253: 14201426.Google Scholar
29. Young, GB, McLachlan, RS, Kreeft, JH, Demelo, JD. An electroencephalographic classification for coma. Can J Neurol Sci 1997; 24: 320325.CrossRefGoogle ScholarPubMed
30. Facco, E, Behr, AU, Munari, M, et al. Auditory and somatosensory evoked potentials in coma following spontaneous cerebral hemorrhage: early prognosis and outcome. Electroencephalogr Clin Neurophysiol 1998; 107: 332338.CrossRefGoogle ScholarPubMed
31. Greenberg, RP, Newlon, PG, Hyatt, MS, et al. Prognostic implications of early multimodality evoked potentials in severe head injury.A prospective study. J Neurosurg 1981; 55: 227236.CrossRefGoogle Scholar
32. Lindsay, KW, Carlin, J, Kennedy, I, et al. Evoked potentials in severe head injury--analysis and relation to outcome. J Neurol Neurosurg Psychiatry 1981; 44: 796802.CrossRefGoogle ScholarPubMed
33. Tsubokawa, T, Nishimoto, H, Yamamoto, T, et al. Assessment of brainstem damage by the auditory brainstem responses in acute severe head injury. J Neurol Neurosurg Psychiatry 1980;43: 10051011.Google Scholar
34. Goldie, WD, Chiappa, KH, Young, RR, et al. Brainstem auditory and short-latency somatosensory evoked responses in brain death. Neurology 1981; 31: 248256.CrossRefGoogle ScholarPubMed
35. Edgren, E, Hedstrand, U, Kelsey, S, Sutton-Tyrell, K, Safar, P. Assessment of neurological prognosis in comatose survivors of cardiac arrest. BRCTI Study Group. Lancet 1994; 343: 10551059.Google Scholar
36. Seales, DM, Rossiter, VS, Weinstein, ME. Brainstem auditory evoked responses in patients comatose as a result of blunt head trauma. J Trauma 1979; 19: 347352.Google Scholar
37. Soustiel, JF, Hafner, H, Guilburd, JN, et al. A physiological coma scale: grading of coma by combined use of brainstem trigeminal and auditory evoked potentials and the Glasgow Coma Scale. Electroencephalogr Clin Neurophysiol 1993; 87(5): 277283.CrossRefGoogle ScholarPubMed
38. Rumpl, E, Prugger, M, Battista, HJ, et al. Short latency somatosensory evoked potentials and brainstem auditory evoked potentials in coma due to CNS depressant drug poisoning: preliminary observations. Electroencephalogr Clin Neurophysiol 1988; 70: 482489.CrossRefGoogle ScholarPubMed
39. Rumpl, E, Prugger, M, Gerstenbrand, F, et al. Central somatosensory conduction time and acoustic brainstem transmission time in post-traumatic coma. J Clin Neurophysiol 1988; 5: 237260.Google Scholar
40. Hume, AL, Cant, BR, Shaw, NA. Central somatosensory conduction time in comatose patients. Ann Neurol 1979; 5:379384.CrossRefGoogle ScholarPubMed
41. Litscher, G, Schwartz, G, Kleinert, R. Brainstem auditory evoked potential monitoring. Variations of stimulus artifact in brain death. Electroencephalogr Clin Neurophysiol 1995; 96: 413419.Google Scholar
42. Rumpl, E, Prugger, M, Gerstenbrand, F, et al. Central somatosensory conduction time and short latency somatosensory evoked potentials in post-traumatic coma. Electroencephalogr Clin Neurophysiol 1983; 56: 583596.Google Scholar
43. Newlon, PG, Greenberg, RP, Enas, GG, et al. Effects of therapeutic coma on multimodality evoked potentials recorded from severely head-injured patients. Neurosurgery 1983; 12: 613619.Google Scholar
44. Sutton, LN, Frewen, T, Marsch, R, et al. The effects of deep barbiturate coma on multimodality evoked potentials. J Neurosurg 1982; 57: 178185.CrossRefGoogle ScholarPubMed
45. Gutling, E, Gonser, A, Regard, M, et al. Dissociation of frontal and parietal components of somatosensory evoked potentials in severe head injury. Electroencephalogr Clin Neurophysiol 1993; 88: 369376.Google Scholar
46. Chatrian, GE, Bergamasco, B, Bricolo, A, et al. IFCN recommended standards for electrophysiologic monitoring in comatose and other unresponsive states: report of an IFCN committee. Electroencephalogr Clin Neurophysiol 1996; 99: 103122.Google Scholar
47. Yvert, B, Crouzeix, A, Bertrand, O, Seither-Preisler, S, Pantev, C. Multiple supratemporal sources of magnetic and electric auditory evoked middle latency components in humans. Cerebral Cortex 2001; 11: 411423.Google Scholar
48. Fischer, C, Morlet, D, Bouchet, P, et al. Mismatch negativity and late auditory evoked potentials in comatose patients. Clin Neurophysiol 1999; 110: 16011610.CrossRefGoogle ScholarPubMed
49. Morlet, D, Bouchet, P, Fischer, C. Mismatch negativity and N100 monitoring: potential clinical value and methodological advances. Audiol Neurootol 2000; 5: 198206.Google Scholar
50. Litscher, G. Middle latency auditory evoked potentials in intensive care patients and normal controls. Int J Neurosci 1995; 83: 253267.Google Scholar
51. Morlet, D, Bertrand, O, Salord, F, et al. Dynamics of MLAEP changes in midazolam-induced sedation. Electroencephalogr Clin Neurophysiol 1997; 104: 437446.CrossRefGoogle ScholarPubMed
52. Polich, J, Kok, A. Cognitive and biological determinants of P300: an integrative review. Biol Psychol 1995; 41(2): 103146.Google Scholar
53. Goodin, DS, Starr, A, Chippendale, T, et al. Sequential changes in the P3 component of the auditory evoked potential in confusional states and dementing illnesses. Neurology 1983; 33: 12151218.Google Scholar
54. Olbrich, HM, Nau, HE, Lodemann, E, et al. Evoked potential assessment of mental function during recovery from severe head injury. Surg Neurol 1986; 26: 112118.Google Scholar
55. Mecklinger, A, Opitz, B, Friederici, AD. Semantic aspects of novelty detection in humans. Neurosci Lett 1997; 235: 6568.Google Scholar
56. Näätänen, R, Gaillard, AWK, Mantysalo, S. Early selective-attention effect reinterpreted. Acta Psychol 1978; 42: 313329.Google Scholar
57. Schröger, E. On the detection of auditory deviations: a pre-attentive activation model. Psychophysiology 1997; 34: 245257.Google Scholar
58. Kropotov, JD, Alho, K, Näätänen, R, et al. Human auditory-cortex mechanisms of pre-attentive sound discrimination. Neurosci Lett 2000; 280: 8790.CrossRefGoogle Scholar
59. Opitz, B, Mecklinger, A, Von Cramon, DY, Kruggel, F. Combining electrophysiological and hemodynamic measures of the auditory oddball. Psychophysiology 1999; 36: 142147.Google Scholar
60. Deouell, LY, Bentin, S, Giard, MH. Mismatch negativity in dichotic listening: evidence for interhemispheric differences and multiple generators. Psychophysiology 1998; 35: 355365.CrossRefGoogle ScholarPubMed
61. Näätänen, R. Mismatch negativity (MMN): perspectives for application. Int J Psychophysiol 2000; 37: 310.Google Scholar
62. Kane, NM, Curry, SH, Butler, SR, et al. Electrophysiological indicator of awakening from coma. Lancet 1993; 341: 688.Google Scholar
63. Kane, NM, Curry, SH, Rowlands, CA, et al. Event-related potentials - neurophysiological tools for predicting emergence and early outcome from traumatic coma. Intensive Care Med 1996; 22:3946.Google Scholar
64. Alho, K, Winkler, I, Escera, C, et al. Processing of novel sounds and frequency changes in the human auditory cortex: magneto-encephalographic recordings. Psychophysiology 1998; 35: 211224.Google Scholar
65. Knight, RT. Contribution of human hippocampal region to novelty detection. Nature 1996; 383: 256259.CrossRefGoogle ScholarPubMed
66. Young, GB, Ropper, AH, Bolton, C. Coma and impaired conscious ness: a clinical perspective. New York, McGraw-Hill, 1998.Google Scholar
67. Kane, NM, Butler, SR, Simpson, T. Coma outcome prediction using event-related potentials: P3 and mismatch negativity. Audio Neurootol 2000; 5:186191.Google Scholar
68. Barlow, P, Teasdale, G. Predictions of outcome and the management of severe head injuries: the attitudes of neurosurgeons. Neurosurgery 1986; 19: 989991.Google Scholar
69. Dawes, RM, Faust, D, Meehl, RE. Clinical versus actuarial judgement. Science 1989; 243: 16681674.Google Scholar
70. Kaufmann, MA, Buchmann, B, Scheidegger, D, Gratzl, O, Radu, EW. Severe head injury: should expected outcome influence resuscitation and first-day decisions? Resuscitation 1992; 23:199206.Google Scholar
71. Murray, LS, Teasdale, GM, Murray, GD, et al. Does prediction of outcome alter patient management? Lancet 1993; 341: 14871491.Google Scholar
72. Anderson, DC, Bundle, S, Rockswold, GL. Multimodality evoked potentials in closed head trauma. Arch Neurol 1984; 41: 369374.Google Scholar
73. Pohlmann-Eden, B, Dingethal, K, Bender, HJ, et al. How reliable is the predictive value of SEP (somatosensory evoked potentials) patterns in severe brain damage with special regard to the bilateral loss of cortical responses? Intensive Care Med 1997; 23: 301318.Google Scholar
74. Sleigh, JW, Havill, JH, Frith, R, et al. Somatosensory evoked potentials in severe traumatic brain injury: a blinded study. J Neurosurg 1999; 91: 577580.Google Scholar
75. Zandbergen, EG, de Haan, RJ, Stoutenbeek, CP, Koelman, JH, Hijdra, A. Systematic review of early prediction of poor outcome in anoxic-ischemic coma. Lancet 1998; 352: 18081812.Google Scholar
76. Wohlrab, G, Boltshauser, E, Schmitt, B. Neurological outcome in comatose children with bilateral loss of cortical somatosensory evoked potentials. Neuropediatrics 2001; 32: 271274.Google Scholar
77. Zandbergen, EG, de Haan, RJ, Koelman, JH, Hijdra, A. Prediction of poor outcome in anoxic-ischemic coma. J Clin Neurophysiol 2000;17(5): 498501.Google Scholar
78. McPherson, RW, Sell, B, Traystman, RJ. Effects of thiopental, fentanyl, and etomidate on upper extremity somatosensory evoked potentials in humans. Anesthesiology 1986; 65: 584589.Google Scholar
79. Pfefferbaum, A, Wenegrat, BG, Ford, JM, et al. Clinical application of the P3 component of event-related potentials, II: dementia, depression and schizophrenia. Electroencephalogr Clin Neurophysiol 1984; 59: 104124.Google Scholar
80. Polich, J, Ehlers, CL, Otis, S, et al. P300 latency reflects the degree of cognitive decline in dementing illness. Electroencephalogr Clin Neurophysiol 1986; 63: 138144.Google Scholar
81. Pratap-Chand, R, Sinniah, M, Salem, FA. Cognitive evoked potential (P300) a metric for cerebral concussion. Acta Neurol Scand 1988; 78: 185189.Google Scholar
82. Reuter, BM, Linke, DB. P300 and coma. In: Maurer, K, Ed. Topographic brain mapping of EEG and evoked potentials. Berlin; New York: Springer-Verlag, 1989.Google Scholar
83. Yingling, CD, Hosobuchi, Y, Harrington, M. P300 as a predictor of recovery from coma. Lancet 1990; 336: 873.Google Scholar
84. De Giorgio, CM, Rabinowicz, AL, Gott, PS. Predictive value of P300 event-related potentials compared with EEG and somatosensory evoked potentials in nontraumatic coma. Acta Neurol Scand 1993; 87: 423427.CrossRefGoogle Scholar
85. Gott, PS, Rabinowicz, AL, DeGiorgio, CM. P300 auditory event-related potentials in nontraumatic coma. Arch Neurol 1991; 48: 12671270.CrossRefGoogle ScholarPubMed
86. Mecklinger, A, Maess, B, Opitz, B, et al. A MEG analysis of the P300 in visual discrimination task. Electroencephalogr Clin Neurophysiol 1998; 108: 4556.CrossRefGoogle Scholar
87. Baudena, P, Halgren, E, Heit, G, Clarke, JM. Intracerebral potentials to rare target and distractor auditory and visual stimuli: 3. Frontal cortex. Electroencephalogr Clin Neurophysiol 1995; 94: 251264.Google Scholar
88. Clark, CR, O’Hanlon, AP, Wright, MJ, et al. Event-related potential measurement of deficits in information processing following moderate to severe closed head injury. Brain Inj 1992; 6: 509520.Google Scholar
89. Rugg, MD, Cowan, CP, Nagy, ME, et al. Event-related potentials from closed head injury patients in an auditory “oddball” task: evidence of dysfunction in stimulus categorisation. J Neurol Neurosurg Psychiatry 1988; 51: 691698.Google Scholar
90. Fowler, B, Mitchell, I. Biological determinants of p300: the effects of barbiturate on latency and amplitude. Biol Psychol 1997; 46: 113124.Google Scholar
91. Nishimura, N, Ogura, C, Ohta, I. Effects of the dopamine-related drug bromocriptine on event-related potentials and its relation to the law of initial value. Psychiatr Clin Neurosci 1995; 49: 7986.Google Scholar
92. Takeshita, S, Ogura, C. Effect of the dopamine D2 antagonist sulpiride on event-related potentials and its relation to the law of initial value. Int J Psychophysiol 1994; 16: 99106.Google Scholar
93. Born, J, Fehm-Wolfdorf, G, Lutzenberger, W, et al. Vasopressin and electrophysiological signs of attention in man. Peptides 1986; 7: 189193.Google Scholar
94. Born, J, Bruninger, W, Fehm-Wolfdorf, G, et al. Dose-dependent influences on electrophysiological signs of attention in humans after neuropeptide ACTH 4-10. Exp Brain Res 1987; 67: 8592.Google Scholar
95. Jaaskelainen, IP, Lehtokoski, A, Alho, K, et al. Low dose of ethanol suppresses mismatch negativity of auditory event-related potentials. Alcohol Clin Exp Res 1995; 19: 607610.Google Scholar
96. Connolly, JF, D’Arcy, RCN, Newman, RL, Kemps, R. The application of cognitive event-related brain potentials (ERPs) in language-impaired individuals: review and case studies. Int J Psychophysiol 2000; 38: 5570.Google Scholar
97. Connolly, JF, D’Arcy, RCN. Innovations in neuropsychological assessment using event-related brain potentials. Int J Psychophysiol 2000; 37: 3147.Google Scholar
98. Connolly, JF, Mate-Kole, CC, Joyce, BM. Global aphasia: an innovative assessment approach. Arch Phys Med Rehab 1999; 80: 13091315.Google Scholar
99. Kane, NM, Moss, TH, Curry, SH, et al. Quantitative electroencephalographic evaluation of non-fatal and fatal traumatic coma. Electroencephalogr Clin Neurophysiol 1998; 106: 244250.Google Scholar
100. Dow, RS, Ulett, G, Raaf J Electroencephalographic studies immediately following head injury. Am J Psychiatry 1944; 101: 174183.Google Scholar
101. Young, B, Doig, G, Ragazzoni, A. Anoxic-ischemic encephalopathy: clinical and electrophysiological associations with outcome. Neurocritical Care, in press.Google Scholar
102. Prior, PF. The EEG in Cerebral Anoxia. Amsterdam: Excerpta Medica, 1973; 244254.Google Scholar
103. Chiappa, KH. Evoked potentials in clinical medicine, 3rd ed. Lippincoff-Raven, New York. 1997.Google Scholar
104. Young, GB. The EEG in coma. J Clin Neurophysiol 2000; 17: 473485.CrossRefGoogle ScholarPubMed
105. Kinoro, T. Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 1982; 239: 5769.Google Scholar
106. Hamill, RW, Woolf, PD, McDonald, JV, et al. Catecholamines predict outcome in traumatic brain injury. Ann Neurol 1987; 21:438.Google Scholar
107. Barker, AT, Freeston, IL, Jalinous, R, et al. Magnetic stimulation of the human brain and peripheral nervous system: an introduction and the results of an initial clinical evaluation. Neurosurgery 1987; 20: 100109.Google Scholar
108. Friedman, SD, Brooks, WM, Jung, RE, et al. Quantitative proton MRS predicts outcome after traumatic brain injury. Neurology 1999; 52(7): 13841391.Google Scholar
109. Mullie, A, Verstringe, P, Buylaert, W, et al. Predictive value of Glasgow coma score for awakening after out-of-hospital cardiac arrest. Cerebral Resuscitation Study Group for the Belgian Society of Intensive Care. Lancet 1988; 23: 137140.Google Scholar
110. Rohde, V, Zentner, J. Prognostic value of motor evoked potentials in traumatic and nontraumatic coma. Adv Neurosurg 1991; 19: 194200.Google Scholar
111. Taniguchi, M, Schramm, J. Motor evoked potentials facilitated by an additional peripheral nerve stimulation. Electroencephalogr Clin Neurophysiol 1991; 43: 202211.Google Scholar
112. Facco, E, Baratto, F, Munari, M, et al. Sensorimotor central conduction time in comatose patients. Electroencephalogr Clin Neurophysiol 1991; 80: 469476.Google Scholar
113. Zentner, J, Rhode, V. The prognostic value of somatosensory and motor evoked potentials in comatose patients. Neurosurgery 1992; 31: 429434.Google Scholar
114. Starr, A, Achor, LJ. Auditory brainstem responses in neurological disease. Arch Neurol 1975; 32: 761768.CrossRefGoogle ScholarPubMed
115. Kaneko, M. Prognostic evaluation of patients with severe head injury by motor evoked potentials induced by transcranial magnetic stimulation-combined analysis with brainstem auditory evoked potentials. No To Shinkei 1995; 47: 491496.Google Scholar
116. Miller, JD, Becker, DP, Ward, JD, et al. Significance of intracranial hypertension in severe head injury. J Neurosurg 1977; 47: 503.Google Scholar
117. Edgren, E, Terent, A, Hedstrand, U, et al. Cerebrospinal fluid markers in relation to outcome in patients with global cerebral ischemia. Crit Care Med 1983; 11:4.Google Scholar
118. Curry, SH, Woods, DL, Low, MD. Applications of cognitive ERPs in neurosurgical and neurological patients. In: McCallum, WC, Zappoli, R, Denoth, F (Eds). Cerebral psychophysiology: studies in event-related potentials. Electroencephalogr Clin Neurophysiol (Suppl) 1986; 38: 469484.Google ScholarPubMed
119. Rappaport, M, McCandless, KL, Pond, W, et al. Passive P300 response in traumatic brain injury patients. J Neuropsychiatry Clin Neurosci 1991; 3: 180185.Google Scholar
120. Marshall, LF, Smith, RW, Shapiro, HM. The outcome with aggressive treatment in severe head injuries, part 2: accurate and chronic barbiturate administration in the management of head injury. J Neurosurg 1979; 50: 26.Google Scholar
121. Lew, HL, Price, R, Slimp, J, Massagli, T, Robinson, L. Comparision of speech v tone-evoked P300 response: implications for predicting outcomes in brain injury. Am J Phys Med Rehabil 1999; 78(4): 367374.Google Scholar
122. Zandbergen, EGJ, de Haan, RJ, Hijdra, A. Systematic review of prediction of poor outcome in anoxic-ischemic coma with biochemical markers of brain damage. Intensive Care Med 2001; 27:16611667.Google Scholar
123. Ono, JI, Yamaaura, A, Kubota, M, Okimura, Y, Isobe, K. Outcome prediction in severe head injury: analyses of clinical prognostic factors. J Clin Neurosci 2001; 8: 120123.Google Scholar
124. Wijdicks, EFM, Campeau, NGM, Miller, GM. MR imaging in comatose survivors of cardiac resuscitation. AJNR Am J Neuroradiol 2001; 22: 15611565 Google Scholar
125. Wedekind, C, Fischbach, R, Pakos, P, Terhaag, D, Klug, N. Comparative use of magnetic resonance imaging and electrophysiologic investigation for the prognosis of head injury. J Trauma 1999; 47(1):4449.Google Scholar
126. Firsching, R, Woischneck, S, Reissberg, S, Dohring, W, Peters, B. Classification of severe head injury based on magnetic resonance imaging. Acta Neurochir (Wien) 2001; 143:263271.Google Scholar
127. Arbelaez, A, Castillo, M, Muktierji, SK. Diffusion-weighted MR imaging of global ischemic cerebral anoxia. AJNR Am J Neuroradiol 1999; 20: 9991007.Google Scholar
128. Merton, PA, Morton, HB. Stimulation of the cerebral cortex in the intact subject. Nature 1980; 285: 227.Google Scholar
129. Abbruzzese, G, Marchese, R, Trompetto, C. Sensory and motor evoked potentials in multiple system atrophy: a comparative study with Parkinson’s disease. Mov Disord 1997; 12: 315321.Google Scholar
130. Signorino, M, D’Acunto, S, Angeleri, F, et al. Eliciting P300 in comatose patients. Lancet 1995; 345: 255256.CrossRefGoogle ScholarPubMed
131. Prevec, TS, Saltuari, L, Masala, C. Mental functions in apallic patients after traumatic cerebral lesions. Electroencephalogr Clin Neurophysiol 1993; 87: S130.Google Scholar
132. Mazzini, L, Zaccala, M, Gareri, F, et al. Long-latency auditory-evoked potentials in severe traumatic brain injury. Arch Phys Med Rehabil 2001; 82:5765.Google Scholar
133. O’Mahony, D, Rowan, M, Walsh, JB, et al. P300 as a predictor of recovery from coma. Lancet 1990; 336: 12651266.Google Scholar
134. Dawson, RE, Webster, JE, Gurdjian, ES. Serial electroencephalography in acute head injuries. J Neurosurg 1951; 8: 613630.Google Scholar
135. Noseworthy, TW, Anderson, BJ, Noseworthy, AF, et al. Cerebrospinal fluid myelin basic protein as a prognostic marker in patients with head injury. Crit Care Med 1985; 13: 743.Google Scholar
136. Garnett, MR, Blamire, AM, Rajagopalan, B, Styles, P, Cadoux-Hudson, TA. Evidence for cellular damage in normal-appearing white matter correlates with injury severity in patients following traumatic brain injury: a magnetic resonance spectroscopy study. Brain 2000; 123: 14031409.Google Scholar
137. Marshall, LF, Toole, BM, Bowers, SA. The national traumatic coma data bank, part 2. Patients who talk and deteriorate: implications of treatment. J Neurosurg 1983; 59: 285.Google Scholar
138. Vapalahti, M, Luukkonen, M, Puranen, M, et al. Early clinical signs and prognosis in children with brain injuries. Ann Clin Res 1986; 18 (Suppl 47): 37.Google Scholar
139. Esparza, J, M-Portillo, J, Sarabia, M, et al. Outcome in children with severe head injuries. Childs Nerv Syst 1985; 1: 109.Google Scholar
140. Young, GB, Bolton, CF, Austin, TW, Archibald, Y, Wells, GA. The electroencephalogram in sepsis-associated encephalopathy. J Clin Neurophysiology 1992; 9: 145152.Google Scholar
141. Simpson, DA, Cockington, DA, Hanieh, A, et al. Head injuries in infants and young children: the value of the paediatric coma scale. Childs Nerv Syst 1991; 7: 183190.Google Scholar
142. Facco, E, Martini, A, Zuccarello, M, et al. Is the auditory brainstem response (ABR) effective in the assessment of post-traumatic coma? Electroencephalogr Clin Neurophysiol 1985; 62:332337.Google Scholar
143. Firsching, R, Wilhelms, S, Hilgers, RD. Pyramidal tract lesions in comatose patients. Acta Neurochir (Wien) 1991; 112: 106109.Google Scholar
144. Salerno, A, Carlander, B, Camu, W, et al. Motor evoked potentials (MEPs): evaluation of the different types of responses in amyotrophic lateral sclerosis and primary lateral sclerosis. Electromyogr Clin Neurophysiol 1996; 36: 361368.Google Scholar
145. Schwarz, S, Schwab, S, Aschoff, A, et al. Favorable recovery from bilateral loss of somatosensory evoked potentials. Crit Care Med 1999; 27 (1): 182187.CrossRefGoogle ScholarPubMed
146. Rothstein, TL. The role of evoked potentials in anoxic-ischemic coma and severe brain trauma. J Clin Neurophysiol 2000; 17(5): 486497.Google Scholar
147. Alster, J, Pratt, H, Feinsod, M. Density spectral array, evoked potentials, and temperature rhythms in the evaluation and prognosis of the comatose patient. Brain Inj 1993; 7(3): 191208.Google Scholar
148. Hu, CJ, Chan, KY, Lin, TJ, et al. Traumatic brainstem deafness with normal brainstem auditory evoked potentials. Neurology 1997; 48:14481451.Google Scholar
149. Harslem, R, Riffel, B, Trost, E, et al. Evaluation of peak VI and VII of brainstem auditory evoked potentials (BAEPs) in severe head injury. Electroencephalogr Clin Neurophysiol 1987; 66: 64.Google Scholar
150. Scherg, M, Von Cramon, D. A new interpretation of the generators of BAEP waves I-V. Results of a spatio-temporal dipole model. EEG Clin Neurophysiol 1985; 62: 277289.Google Scholar
151. Balogh, A, Wedekind, C, Klug, N. Does wave VI of BAEP pertain to the prognosis of coma? Neurophysiol Clin 2001; 31: 406411.Google Scholar
152. Rohde, V, Irle, S, Hassler, WE. Prediction of the post-comatose motor function by motor evoked potentials obtained in the acute phase of traumatic and non-traumatic coma. Acta Neurochir (Wien) 1999; 141: 841848.Google Scholar
153. Ying, Z, Schmid, UD, Schmid, J, Hess, CW. Motor and somatosensory evoked potentials in coma: analysis and relation to clinical status and outcome. J Neurol Neurosurg Psychiatry 1992; 55: 470474.Google Scholar
154. Synek, VM. Prognostically useful coma patterns in diffuse anoxic and traumatic encephalopathies in adults. J Clin Neurophysiol 1988; 5: 161174.Google Scholar
155. Gerber, CJ, Lang, DA, Neil-Dwyer, G, et al. A simple scoring system for accurate prediction of outcome within four days of a subarachnoid hemorrhage. Acta Neurochir 1993; 122:1122.Google Scholar
156. Millers, KR, Murray, NMF. Corticospinal tract conduction time in multiple sclerosis. Ann Neurol 1985; 18: 601605.Google Scholar
157. Vespa, PM, Nuwer, MR, Nenov, V, et al. Increased incidence and impact of nonconvulsive and convulsive seizures after traumatic brain injury as detected by continuous EEG monitoring. J Neurosurg 1999; 91: 119.CrossRefGoogle Scholar
158. Hunt, WE, Hess, RM. Surgical risk as related to time of intervention in the repair of intracranial aneurysms. J Neurosurg 1968;28:1420.Google Scholar
159. Drake, CG, Hunt, WE, Sano, K, et al. Report of World Federation of Neurological Surgeons committee universal subarachnoid haemorrhage grading scale. J Neurosurg 1988; 68:985986.Google Scholar
160. Longstreth, WT, Diehr, P, Inui, TS. Prediction of awakening after out-of-hospital cardiac arrest. N Eng J Med 1983; 308: 13781382.Google Scholar
161. Binnie, CD, Prior, PF. Electroencephalography. J Neurol Neurosurg Psychiatry 1994; 57: 13081318.Google Scholar