Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T20:23:36.427Z Has data issue: false hasContentIssue false

Predictors of Surgical Candidacy in 414 Epilepsy Patients Admitted to the EMU

Published online by Cambridge University Press:  23 September 2014

Alireza Mansouri*
Affiliation:
Division of Neurosurgery, University of Toronto
Aria Fallah
Affiliation:
Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
George M. Ibrahim
Affiliation:
Division of Neurosurgery, University of Toronto
Taufik A. Valiante
Affiliation:
Division of Neurosurgery, University of Toronto Institute of Medical Sciences, University of Toronto University Health Network Division of Fundamental Neurobiology, Toronto Western Research Institute, Toronto Western Hospital Krembil Neuroscience Center, Toronto
*
Toronto Western Hospital, 4W-436, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada. Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objectives:

Admission to an Epilepsy Monitoring Unit (EMU) is essential for pre-surgical evaluation of patients with medically-refractory epilepsy; however, prolonged referral times and resource limitations are significant access barriers. Therefore, identification of pre-EMU variables that predict potential surgical candidates can assist in the triage of patient admissions to the EMU.

Methods:

In this hypothesis-generating study, a retrospective analysis of patients admitted for pre-surgical evaluation to the Toronto Western Hospital EMU (2004-2011) was performed. Univariate and multivariate logistic regression was used to identify variables that could independently predict subsequent surgical candidacy following EMU evaluation.

Results:

Four hundred and fourteen patients were admitted to the EMU. Overall, 259 patients (62.5%) were identified as potential surgical candidates. One hundred and seven patients (25.8%) required invasive electroencephalogram (iEEG) implantations; of 75 patients consenting to iEEG analysis 39 underwent a subsequent resective procedure. Male patients and those with a lesion on MRI were 1.9 times more likely to be surgical candidates (95% CI 1.18-2.98 and 0.94-3.80, respectively), while patients with non-localizable seizures were seven times less likely (95% CI 0.02-1.25).

Conclusion:

In this retrospective, hypothesis-generating study male gender, presence of a lesion on MRI and localizable seizures on routine outpatient EEG analysis independently predicted subsequent resective epilepsy surgical candidacy in EMU patients. Upon validation by other studies, these variables may be considered by clinicians referring patients to the EMU in order to improve wait times and optimize patient care.

Résumé:

Résumé:Objectif:

Il est essentiel d'admettre les patients présentant une épilepsie réfractaire au traitement médical à une unité de surveillance de l'Épilepsie (usé) pour une évaluation avant la chirurgie. Cependant, le temps d'attente et les ressources limitées constituent des obstacles importants. L'identification de variables qui sont des facteurs de prédiction caractérisant les candidats à la chirurgie avant leur admission à l'usé pourrait aider au triage préadmission.

Méthode:

Dans cette étude dont le but était de générer des hypothèses nous avons analysé rétrospectivement les dossiers des patients admis pour une évaluation préchirurgicale à l'usé du Toronto Western Hospital de 2004 à 2011. Nous avons utilisé l'analyse de régression univariée et multivariée pour identifier les variables qui pouvaient prédire de façon indépendante que le patient serait un candidat à la chirurgie après l'évaluation à l'usé.

Résultats:

Quatre cent quatorze patients ont été admis à l'usé. Parmi ces patients, 259 patients (62,5%) ont été identifiés comme étant des candidats potentiels à la chirurgie. cent sept patients (25,8%) ont eu besoin d'un ÉEG effractif. Soixante-quinze patients ont consenti à cet examen et 39 d'entre eux ont subi une résection par la suite. Les hommes et ceux qui avaient une lésion à l'IRM étaient 1,9 fois plus susceptibles d'être des candidats à la chirurgie (IC à 95%: 1,18 à 2,98 et 0,94 à 3,80 respectivement), alors que les patients qui avaient des crises non localisables étaient sept fois moins susceptibles de l'être (IC à 95% : 0,02 à 1,25).

Conclusion:

Dans cette étude rétrospective destinée à générer des hypothèses, le sexe masculin, la présence d'une lésion à l'irm et des crises localisables à l'ÉEG de routine effectué en externe chez des patients admis à l'usé étaient des facteurs de prédiction indépendants d'une candidature à une résection chirurgicale. Après validation par d'autres études, les cliniciens qui réfèrent des patients à l'usé pourraient tenir compte de ces variables afin de diminuer le temps d'attente et d'optimiser les soins aux patients.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Schuele, SU, Luders, HO. Intractable epilepsy: management and therapeutic alternatives. Lancet Neurol. 2008;7(6):514–24.CrossRefGoogle ScholarPubMed
2. Spencer, S, Huh, L. Outcomes of epilepsy surgery in adults and children. Lancet Neurol. 2008;7(6):525–37.CrossRefGoogle ScholarPubMed
3. Engel, J Jr. Surgical treatments of the epilepsies. New York: Raven Press; 1993.Google Scholar
4. Spencer, SS, Williamson, PD, Bridgers, SL, Mattson, RH, Cicchetti, DV, Spencer, DD. Reliability and accuracy of localization by scalp ictal EEG. Neurology. 1985 Nov;35(11):1567–75.CrossRefGoogle ScholarPubMed
5. Ibrahim, GM, Barry, BW, Fallah, A, et al. Inequities in access to pediatric epilepsy surgery: a bioethical framework. Neurosurg Focus. 2012;32(3:E2).CrossRefGoogle ScholarPubMed
6. Benbadis, SR, Heriaud, L, Tatum, WO, Vale, FL. Epilepsy surgery, delays and referral patterns-are all your epilepsy patients controlled? Seizure. 2003;12:167–70.Google Scholar
7. Smolowitz, JL, Hopkins, SC, Perrine, T, Eck, KE, Hirsch, LJ, O’Neil M. Diagnostic utility of an epilepsy monitoring unit. Am J Med Qual. 2007 Mar-Apr;22(2):117–22.Google Scholar
8. Benbadis, SR, Siegrist, K, Tatum, WO, Heriaud, L, Anthony, K. Short-term outpatient EEG video with induction in the diagnosis of psychogenic seizures. Neurology. 2004 Nov 9;63(9):1728–30.CrossRefGoogle ScholarPubMed
9. Benbadis, SR, O’Neill, E, Tatum, WO, Heriaud, L. Outcome of prolonged video-EEG monitoring at a typical referral epilepsy center. Epilepsia. 2004 Sep;45(9):1150–3.CrossRefGoogle Scholar
10. Villanueva, V, Gutierrez, A, Garcia, M, et al. Usefulness of Video-EEG monitoring in patients with drug-resistant epilepsy. Neurologia. 2011 January - February;26(1):612.CrossRefGoogle ScholarPubMed
11. Carlson, C, Dugan, P, French, J. Progression to epilepsy surgery following pre-surgical evaluation. American Epilepsy Society (Abstracts). 2011.Google Scholar
12. Tsai, JJ, Cheng, TJ. Status of follow-up among patients with epilepsy in epilepsy clinic. Jpn J Psychiatry Neurol. 1992 Jun;46(2):405–8.Google ScholarPubMed
13. McHugh, JC, Delanty, N. Epidemiology and classification of epilepsy: gender comparisons. Int Rev Neurobiol. 2008;83:1126.CrossRefGoogle ScholarPubMed
14. Burneo, JG, Black, L, Martin, R, et al. Race/ethnicity, sex, and socioeconomic status as predictors of outcome after surgery for temporal lobe epilepsy. Arch Neurol. 2006 Aug;63(8):1106–10.CrossRefGoogle Scholar
15. Lerner, JT, Salamon, N, Hauptman, JS, et al. Assessment and surgical outcomes for mild type I and severe type II cortical dysplasia: a critical review and the UCLA experience. Epilepsia. 2009 Jun;50 (6):1310–35.CrossRefGoogle ScholarPubMed
16. Cossu, M, Lo Russo, G, Francione, S, et al. Epilepsy surgery in children: results and predictors of outcome on seizures. Epilepsia. 2008 Jan;49(1):6572.CrossRefGoogle ScholarPubMed
17. Jeha, LE, Najm, I, Bingaman, W, Dinner, D, Widdess-Walsh, P, Luders, H. Surgical outcome and prognostic factors of frontal lobe epilepsy surgery. Brain. 2007 Feb;130(Pt 2):574–84.CrossRefGoogle ScholarPubMed
18. Bernasconi, A, Bernasconi, N, Bernhardt, BC, Schrader, D. Advances in MRI for ‘cryptogenic’ epilepsies. Nat Rev Neurol. 2011 Feb;7(2):99108.CrossRefGoogle ScholarPubMed
19. Scott, CA, Fish, DR, Smith, SJ, et al. Presurgical evaluation of patients with epilepsy and normal MRI: role of scalp video-EEG telemetry. J Neurol Neurosurg Psychiatry. 1999 Jan;66(1):6971.CrossRefGoogle ScholarPubMed
20. Cascino, GD, Jack, CR Jr., Parisi, JE, et al. Magnetic resonance imaging-based volume studies in temporal lobe epilepsy: pathological correlations. AnnNeurol. 1991 Jul;30(1):31–6.Google ScholarPubMed
21. Zumsteg, D, Wieser, HG. Presurgical evaluation: current role of invasive EEG. Epilepsia. 2000;41 Suppl 3:S5560.CrossRefGoogle ScholarPubMed
22. Vonck, K, Boon, P, Achten, E, De Reuck, J, Caemaert, J. Long-term amygdalohippocampal stimulation for refractory temporal lobe epilepsy. Ann Neurol. 2002 Nov;52(5):556–65.Google Scholar
23. Scott, RC, King, MD, Gadian, DG, Neville, BG, Connelly, A. Hippocampal abnormalities after prolonged febrile convulsion: a longitudinal MRI study. Brain. 2003 Nov;126(Pt 11):2551–7.CrossRefGoogle ScholarPubMed
24. Sanon, NT, Desgent, S, Carmant, L. Atypical febrile seizures, mesial temporal lobe epilepsy, and dual pathology. Epilepsy Res Treat. 2012;2012:9.CrossRefGoogle Scholar
25. Scantlebury, MH, Heida, JG. Febrile seizures and temporal lobe epileptogenesis. Epilepsy Res. 2010 Mar;89(1):2733.CrossRefGoogle ScholarPubMed