Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T04:33:16.996Z Has data issue: false hasContentIssue false

Pre- And Postsynaptic Effects of Taurine and Gaba in the Cockroach Central Nervous System

Published online by Cambridge University Press:  18 September 2015

B. Hue
Affiliation:
le Département de Physiologie, Faculté Mixte de Médecine et de Pharmacie, Centre Universitaire d'Angers, France
M. Pelhate
Affiliation:
le Département de Physiologie, Faculté Mixte de Médecine et de Pharmacie, Centre Universitaire d'Angers, France
J. Chanelet
Affiliation:
le Département de Physiologie, Faculté Mixte de Médecine et de Pharmacie, Centre Universitaire d'Angers, France
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Taurine resembles G ABA in its synaptic effects in the cockroach cereal nerve giantfiber synapse where it exerts a depressant action upon synaptic transmission. Both taurine and G A B A produce an increased conductance of pre- and postsynaptic membranes through changes in the permeability of chloride ions.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1979

References

Ariens, E. J., and Simonis, A. M. (1964): A molecular basis for drug action. J. Pharm. Pharmac, 16: 137157.Google Scholar
Atwood, H. L., and Jahromi, S. S. (1967): Strychnine and neuromuscular transmission in the cockroach. J. Insect Physiol., 13: 10651073.Google ScholarPubMed
Barker, J. L., Nicoll, R. A., and Padjen, A. (1975a): Studies on convul-sants in the isolated frog spinal cord. I. Antagonism of amino acid responses. J. Physiol. (Lond.), 245: 521536.Google ScholarPubMed
Barker, J. L., Nicoll, R. A., and Padjen, A. (1975b): Studies on convul-sants in the isolated frog spinal cord. II. Effects on root potentials. J. Physiol. (Lond.), 245: 537548.CrossRefGoogle ScholarPubMed
Bowery, N.G., and Brown, D.A. (1974): Depolarizing actions of y-aminobutyric acid and related compounds on rat cervical ganglia in vitro. Br. J. Pharmac, 50: 205218.Google Scholar
Callec, J. J. (1974): Synaptic transmission in the central nervous system of insects. In: “Insect Neurobiology”, edited by Treherne, J.E., 35: 110185. North Holland/American Elsevier.Google Scholar
Callec, J. J., and Sattelle, D. B. (1973): A simple technique for monitoring the synaptic actions of pharmacological agents. J. Exp. Biol., 59: 725738.Google ScholarPubMed
Constanti, A. (1977): A quantitative study of the γ-aminobutyric acid (GABA) dose/conductance relationship at the lobster inhibitory neuromuscular junction. Neuro-pharmacology, 16: 357366.Google Scholar
Curtis, D. R., Duggan, A. W., and Johnston, G.A.R. (1971): The specificity of strychnine as a glycine antagonist in the mammalian spinal cord. Exp. Brain Res., 12: 547565.Google ScholarPubMed
Curtis, D. R., and Watkins, J. C. (1965): The pharmacology of amino acids related to gamma-aminobutyric acid. Pharmacol. Rev., 17: 347391.Google ScholarPubMed
Davidoff, R. A. (1972): The effects of bicu-culline on the isolated spinal cord of the frog. Exp. Neurol., 35: 179193.Google ScholarPubMed
Davidson, N., and Southwick, C. A. P. (1971): Amino acids and presynaptic inhibition in the rat cunéate nucleus. J. Physiol. (Lond.), 219: 689708.Google ScholarPubMed
Degroat, W. C. (1970) The actions of y-aminobutyric acid and related amino acids on mammalian autonomie ganglia. J. Pharmacol, and Exp. Ther., 172: 384396.Google Scholar
Degroat, W. C. (1972): GABA-depolariza-tion of sensory ganglia: antagonism by picrotoxin and bicuculline. Br. Res., 38: 429432.Google Scholar
Deschesnes, M., Feltz, P., and La-Mour, Y. (1976): A model for an estimate in vivo of the ionic bases of presynaptic inhibition: an intracellular analysis of the GABA-induced depolarization in rat dorsal root ganglia. Br, Res., 118: 486499.Google Scholar
Dudel, J. (1965): Presynaptic inhibition of the excitatory nerve terminal in the neuromuscular junction of the crayfish. Arch. Ges. Physiol., 277: 537577.CrossRefGoogle Scholar
Feltz, A. (1971): Competitive interaction of ß-guanidino propionic acid and y-aminobutyric acid on the muscle fibre of the crayfish. J. Physiol. (Lond.), 216: 391401.CrossRefGoogle Scholar
Gallagher, J. P., Higashi, H., and Nishi, S. (1978): Characterization and ionic basis of GABA-induced depolarizations recorded in vitro from cat primary afferent neurones. J. Physiol. (Lond.), 275: 263282.Google ScholarPubMed
Hilton, J.G. (1977): Acetylcholine stimulation of the sympathetic ganglia: effects of taurine and nicotinic and muscarinic ganglion block. J. of Pharmacol, and Exp. Ther., 203: 426434.Google ScholarPubMed
Horii, D., Takeuchi, F., Shiono, K., and Ishil, T. (1971): Sympathetic ganglionic actions of homotaurine and hexametho-nium. Folia pharmacol. Japon., 67: 564571.CrossRefGoogle Scholar
Hue, B., Pelhate, M., Callecj, J., and Chanelet, J. (1976): Synaptic transmission in the sixth ganglion of the cockroach: action of 4-aminopyridine. J. Exp. Biol., 65: 517527.Google ScholarPubMed
Hue, B., Pelhate, M., and Chanelet, J. (1978) — Sensitivity of postsynaptic neurons of the Insect Central Nervous System to externally applied taurine. In: “Taurine and Neurological Disorders”, ed. by Barbeau, A. and Huxtable, R. J., Raven Press, New York.Google Scholar
Katz, B., and Miledi, R. (1967): A study of synaptic transmission in the absence of nerve impulses. J. Physiol. (Lond.), 192: 407436.Google ScholarPubMed
Keynes, R. D. (1962): Active transport of chloride in the squid giant axon. J. Physiol. (Lond.), 163: 19P.Google Scholar
Koidl, B., and Florey, E. (1975): Factor I and GABA: resolution of a long-standing problem. comp. Biochem. Physiol., 51C: 1323.Google ScholarPubMed
Levy, R. A., and Anderson, E.G. (1972): The effect of GABA antagonists bicuculline and picrotoxin on primary afferent terminal excitability. Br. Res., 43: 171180.Google ScholarPubMed
Nishi, S., Minota, S., and Karczmar, A.G. (1974): Primary afferent neurones: the ionic mechanism of GABA-mediated depolarization. Neuropharmacology, 13: 215219.Google ScholarPubMed
Nistri, A., and Constanti, A. (1976): The action of taurine on the lobster muscle fiber and the frog spinal cord. Neuropharmacology, 15: 635641.Google ScholarPubMed
Parnas, I., and Atwood, H. L. (1966): Differential effects of strychnine on crustacean fast, slow, and inhibitory neuromuscular systems. J. Cell. Physiol., 68: 112.Google ScholarPubMed
Pelhate, M., Hue, B., and Chanelet, J. (1978): Insensitivity oftheaxonal membrane of the cockroach (Periplaneta americana) to externally applied taurine. In: “Taurine and Neurological Disorders”, ed. by Barbeau, A. and Huxtable, R. J., Raven Press, New York.Google Scholar
Pichón, Y., and Callecj, J. (1970): Further studies on synaptic transmission in Insects. I. External recording of synaptic potentials in a single giant axon of the cockroach, Periplaneta americana L. J. Exp. Biol., 52: 257265.Google Scholar
Schmidt, R. F. (1963): Pharmacological studies on the primary afferent depolarization of the toad spinal cord. Pflügers Arch. Physiol., 277: 325364.Google ScholarPubMed
Takeuchi, A., and Takeuchi, N. (1969): A study of the action of picrotoxin on the inhibitory neuromuscular junction of the crayfish. J. Physiol. (Lond.), 205: 377391.Google ScholarPubMed
Takeuchi, A., and Takeuchi, N. (1975): The structure-activity relationship for GABA and related compounds in the crayfish muscles. Neuropharmacology, 14: 627634.Google Scholar
Tebecis, A.K., and Phillis, J.W. (1969): The use of convulsant in studying possible functions of amino acids in the toad spinal cord. comp. Biochem. Physiol., 28: 13031315.Google ScholarPubMed