Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-24T05:59:10.561Z Has data issue: false hasContentIssue false

Platelet Taurine Uptake in Spinocerebellar Degeneration

Published online by Cambridge University Press:  18 September 2015

A. Filla
Affiliation:
Department of Neurobiology, Clinical Research Institute of Montreal; Hôpital Sainte-Justine; Centre Hospitalier Universitaire de Sherbrooke
R. F. Butterworth
Affiliation:
Department of Neurobiology, Clinical Research Institute of Montreal; Hôpital Sainte-Justine; Centre Hospitalier Universitaire de Sherbrooke
G. Geoffroy
Affiliation:
Department of Neurobiology, Clinical Research Institute of Montreal; Hôpital Sainte-Justine; Centre Hospitalier Universitaire de Sherbrooke
B. Lemieux
Affiliation:
Department of Neurobiology, Clinical Research Institute of Montreal; Hôpital Sainte-Justine; Centre Hospitalier Universitaire de Sherbrooke
A. Barbeau*
Affiliation:
Department of Neurobiology, Clinical Research Institute of Montreal; Hôpital Sainte-Justine; Centre Hospitalier Universitaire de Sherbrooke
*
Clinical Research Institute of Montreal, 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The uptake of 14C-laurine was studied in the platelets of 20 ataxic patients and 20 age-matched normal control subjects. No significant differences were found in uptake or kinetics of taurine between the two groups of subjects. If a transport defect in taurine exists in Friedreich's ataxia, it is not present in all tissues. Preliminary indication was obtained in favor of heterogenity of the uptake pattern between ataxic individuals.

Type
Quebec Cooperative Study of Friedreich's Ataxia
Copyright
Copyright © Canadian Neurological Sciences Federation 1978

References

REFERENCES

Abrams, W. B. and Salomon, H.M. (1969) .The human platelet as a model for the adrenergic neuron: the uptake and release of norepinephrine. Clin. Pharmacol. Ther., 10, 702709.Google Scholar
Ahtee, L., Boullin, D.J. andPaaso-Nen, M. K. (1976). Transport of taurine by normal human blood platelets. Br. J. Pharmacol., 52, 245251.Google Scholar
Baldessarini, R.J. (1972). Biogenic amines and behavior. Am. Rev. Med., 23, 343354.Google Scholar
Barbeau, A. (1976).Freidreichs ataxia 1976 — An overview. Can. J. Neurol. Sci., 3, 389397.Google Scholar
Barbeau, A., Campanella, G., Butterworth, R. F. and Yamada, K. (1975). Uptake and efflux of 14C-dopamine in platelets: Evidence for a generalized defect in Parkinson’s disease. Neurology, 25, 19.Google Scholar
Boullin, D.J., Airaksinen, E. M. and Paasonen, M. K. (1975). Platelet taurine in Down’s syndrome. Medical Biology, 53, 184186.Google ScholarPubMed
Boullin, D. J. and O’Brien, R. A. (1970) . Accumulation of dopamine by blood platelets from normal subjects and parkinsonian patients under treatment with L-Dopa. Br. J. Pharmacol., 39, 779788.Google Scholar
Buchsbaum, M. S., Coursey, R. D. and Murphy, D. L. (1976). The biochemical high-risk paradigm: Behavioral and familial correlates of low platelets monoamine oxidase activity. Science, 194, 339341.Google Scholar
Butterworth, R. F., Gonce, M. and Barbeau, A. (1977). Uptake of dopamine by platelets of Huntington’s chorea and Gilles de la Tourette’s patient: effect of haloperidol. Can. J. Neurol. Sci., 4, 285288.Google Scholar
Chesney, R.W., Scriver, C. R. and Mohyuddin, F. (1976). Localization of the membrane defect in transepithelial transport of taurine by parallel studies in vivo and in vitro in hypertaurinuric mice. J. Clin. Invest., 57, 183193.Google Scholar
Fredo, J., Koj, A., Zgliczynski, J. M. (1959). Taurine in human blood platelets. Nature, 183, 685––686.CrossRefGoogle Scholar
Gaut, Z. N. and Nauss, C. B. (1976). Uptake of taurine by human blood platelets: A possible model for brain. In: Taurine, (Ed,Huxtable, R. and Barbeau, A.), Raven Press, New York, pp. 9198.Google Scholar
Goldman, H. and Scriver, C.R. (1967). A transport system in mammalian kidney with preference for γ-amino compounds. Pediat. Res., 1, 212213.Google Scholar
Goldstein, A. (1964). Biostatistics New York, The MacMillan Company.Google Scholar
Lemieux, B., Barbeau, A., Be-Roniade, V., Shapcott, D., Breton, G., Geoffroy, G. and Melan-Con, S. (1976). Aminoacid metabolism in Friedreich’s Ataxia. Can. J. Neurol. Sci., 3, 373378.Google Scholar
Lott, I. T., Chase, T. N. and Murphy, D. L. (1972). Down’s syndrome: Transport, storage and metabolism of serotonin in platelets. Pediat. Res., 6, 730735.Google Scholar
Meyers, K. M., Stevens, D. R. and Padgelt, G. A. (1974). A platelet serotonin anomaly in the Chediak-Higashi Syndrome. Rev. Comm. Chem. Path. Pharmacol., 7, 375380.Google Scholar
Meynert, E. W. and Isaac, L. (1968). Uptake and binding of serotonin by the platelets and its granules. In: Advances in Neurology, Raven Press, New York, Vol. 6, pp. 113122.Google Scholar
Murphy, G.F., Mendell, J. R. and Engel, W. K. (1973). Serotonin and platelet function in Duchenne muscular dystrophy. Arch. Neurol., 28, 239242.Google Scholar
Murphy, D. L. and Wyatt, F. J. (1972). Reduced monoamine oxidase activity in blood platelets from schizophrenic patients. Nature, 238, 225226.Google Scholar
Paasonen, M. K. (1973). Blood platelets as a model for aminergic neurons. In: Pharmacology and Future of Men, Vol. 4, Karger, S., Basel, pp. 328342.Google Scholar
Pare, C. M. B., Sandler, M. and Stacey, R. S. (1959). The relationships between increased 5-hydroxyindole metabolism and mental defect in phenylketonuria. Arch. Dis. Chil., 34, 422423.CrossRefGoogle Scholar
Perry, T. L. (1976). Hereditary mental depression with taurine deficiency: Further studies, including therapeutic trial of taurine administration. In: Taurine (Huxtable, R. and Barbeau, A., Eds.), Raven Press, New York, pp. 365374.Google Scholar
Pletscher, A. (1968). Metabolism, transfer and storage of 5-hydroxytryptamine in blood platelets. Br. J. Pharmacol., 32, 116.Google ScholarPubMed
Pletscher, A., Da Prada, M., Ber-NEIS, K. H., Tranzer, J. P. (1971). New aspects of the storage of 5-hydroxytryptamine in blood platelets. Experientia, 27, 9931120.Google Scholar
Scriver, C. R., Pueschel, S. and Davies, E. (1966). Hyper-β-alaninemia associated with β-aminoaciduria and β-aminobutyricaciduria, somnolence and seizures. N. Engl. J. Med., 274, 636643.Google Scholar
Scriver, C. R. and Rosenberg, L. E. (Eds.) (1973). Aminoacids metabolism and its disorders. In: Major Problems in Clinical Pediatrics, Vol. 10, W. B. Saunders Co., Philadelphia, pp. 1491.Google Scholar
Stacey, R.S. (1961). Uptake of 5-hydroxytryptamine by platelets. Br. J. Pharmacol., 16, 284295.Google Scholar
Wyatt, R.J., Murphy, D.L., Bel-Maker, R. (1973). Reduced mono-amineoxidase activity in platelets: A possible genetic marker for vulnerability to schizophrenia. Science, 179, 916918.CrossRefGoogle ScholarPubMed
Yamaguchi, K.. Tomasi, L., Cote, L.J. (1972). Serotonin content of platelet enriched plasma in parkinsonian patients prior and during treatment with L-3,4-dihydroxy-phenylalanine (L-Dopa). Biochem. Med., 6, 210215.Google Scholar