Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-21T23:27:50.208Z Has data issue: false hasContentIssue false

Photodynamic Therapy of Malignant Brain Tumours

Published online by Cambridge University Press:  18 September 2015

Paul J. Muller*
Affiliation:
Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, University of Toronto, Toronto
Brian C. Wilson
Affiliation:
Department of Medical Physics, Ontario Cancer Foundation, and McMaster University, Hamilton
*
Division of Neurosurgery, Department of Surgery, St. Michael's Hospital, 38 Shuter Street, Toronto, Ontario, Canada M5B 1A6
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Fifty patients with malignant supratentorial tumours were treated with intra-operative photodynamic therapy (PDT); in 33 cases the tumour was recurrent. In 45 patients the tumour was a cerebral glioma and in 5 cases a solitary cerebral metastasis. All patients received a porphyrin photosensitizer 18-24 hours pre-operatively. Photoillumination was carried out at 630 nm to a tumour cavity created by radical tumour resection and/or tumour cyst drainage. The light energy density ranged from 8 to 175 J/cm2. In 8 patients additional interstitial light was administered. The operative mortality was 4%. Follow up has ranged from 1 to 30 months. The median survival for the 45 primary malignant tumours was 8.6 months with a 1 and 2 year actuarial survival rate of 32% and 18%, respectively. In 12 patients a complete or near complete CT scan response was identified post PDT. These patients tended to have a tumour geometry (eg. cystic) that allowed complete or near complete light distribution to the tumour. The median survival for this group was 17.1 months with a 1 and 2 year actuarial survival of 62% and 38%, respectively. In the 33 cases who did not have a complete response the median survival was 6.5 months with a 1 and 2 year actuarial survival of 22% and 11%, respectively. Photodynamic therapy of malignant brain tumours can be carried out with acceptable risk. Good responses appear to be related to adequate light delivery to the tumour.

Résumé:

RÉSUMÉ:

Cinquante patients atteints de tumeurs malignes sus-tentorielles ont été traités par thérapie photodynamique (TPD) peropératoire; dans 33 cas, il s'agissait d'une récidive. Chez 45 patients, la tumeur était un gliome cérébral et chez 5 cas, une métastase cérébrale unique. Tous les patients ont reçu une porphyrine photosensibilisatrice 18 a 24 heures avant l'opération. On a procédé à la photoillumination à 630 nm au niveau d'une cavité tumorale créée par résection radicale de la tumeur et/ou par drainage d'une tumeur kystique. La densité de l'énergie lumineuse variait de 8 à 175 J/cm2. Chez 8 patients on a administré de la lumière interstitielle additionnelle. La mortalité opératoire a été de 4%. Le suivi de ces patients varie de 1 à 30 mois. La survie médiane pour les 45 tumeurs malignes primitives était de 8.6 mois avec un taux de survie actuariel à 1 et 2 ans de 32% et 18% respectivement. Chez 12 patients, une réponse complète ou presque complète a été identifée au CT scan post PDT. Ces patients avaient en général une tumeur dont la géométrie (ex. kystique) permettait une distribution complète ou presque complète de la lunière à la tumeur. La survie médiane de ce groupe était de 17.1 mois avec un taux de survie actuariel à 1 et 2 ans de 62% et de 38% respectivement. Chez les 33 cas qui n'ont pas eu une réponse complète, la survie médiane était de 6.5 mois avec un taux de survie actuariel à 1 et 2 ans de 22% et 11% respectivement. La thérapie photodynamique des tumeurs malignes du cerveau peut être effectuée avec un niveau de risque acceptable. Les bonnes réponses semblent être liées à une distribution adéquate de la lumière à la tumeur.

Type
Neurosurgical Symposium - William S. Keith, Visiting Professorship in Neurosurgery
Copyright
Copyright © Canadian Neurological Sciences Federation 1990

References

REFERENCES

1. Walker, MD, Brain tumour study group: a survey of current activities. Natl Cancer Inst Monogr 1977; 46: 209212.Google Scholar
2. Lipson, RL, Baldes, EJ, Olsen, AM. The use of a derivative of hematoporphyrin in tumour detection. JNCL 1961; 26: 111.Google Scholar
3. Dougherty, TJ, Wieshaupt, KR, Boyle, DG, Photosensitizers. In: DeVita, VT Jr, Hellman, S, Rosenberg, SA, eds. Cancer: Principles and Practice of Oncology. 1982; 18361844.Google Scholar
4. Kaye, AH, Morstyn, G, Appuzzo, U. Photoradiation therapy and its potential in the management of neurological tumours. J Neurosurg 1988; 69: 114.CrossRefGoogle Scholar
5. Kayer, AH, Morstyn, G, Ashcroft, RG, Uptake and retension of hematoporphyrin derivative in an in vivo⁄in vitro model of cerebral glioma. Neurosurgery 1985; 17: 883890.Google Scholar
6. Little, FM, Gomer, CJ, Hyman, S, et al. Observations in studies of quantitative kinetics of tritium labelled hematoporphyrin derivatives (HPDI and HPDII) in the normal and neoplastic rat brain model. J Neurooncol 1984; 2: 361370.CrossRefGoogle ScholarPubMed
7. Wharen, RE Jr, Anderson, RE, Laws, ER Jr, et al. Quantitation of hemato-porphyrin derivative in human gliomas, experimental nervous system tumours, and normal tissues. Neurosurgery 1983; 12: 446450.CrossRefGoogle Scholar
8. Boggan, JE, Walter, R, Edwards, MS, et al. Distribution of hematoporphyrin derivative in the rat 9L gliosarcoma brain tumour analyzed by digital video fluorescence microscopy. J Neurosurg 1984; 61: 11131119.CrossRefGoogle ScholarPubMed
9. Granelli, SG, Diamond, I, McDonagh, AF, et al. Photochemotherapy of glioma cells by visible light and hematoporphyrin. Cancer Res 1975; 35: 25562570.Google ScholarPubMed
10. Kaye, AH, Morstyn, G. Photoradiation therapy causing selective tumour kill in a rat glioma model. Neurosurgery 1987; 20: 408415.CrossRefGoogle Scholar
11. Cohen, AM, Wood, WC, Bamberg, M, et al. Cytotoxicity of human brain tumours by hematoporphyrin derivative. J Surg Res 1986; 41: 8182.CrossRefGoogle ScholarPubMed
12. kaye, AH, morstyn, G, Brownbill, D, Adjuvant high dose photoradiation therapy for the treatment malignant glioma: a phase 1-2 study. J Neurosurg 1987; 67: 500505.CrossRefGoogle ScholarPubMed
13. Kostron, H, Weiser, G, Fritsch, W, et al. Photodynamic therapy of malignant brain tumours: clinical and neuropathological results. Photochem 1987; 46: 937943.Google ScholarPubMed
14. Laws, ER, Córtese, DA, Kinsey, JH, et al. Photoradiation therapy in the treatment of malignant brain tumours: a feasibility study. Neurosurg 1981; 9: 672678.CrossRefGoogle Scholar
15. Laws, ER, Wharen, RE Jr. Comments. Neurosurgery 1984; 15: 807809.Google Scholar
16. Law, ER, Wharen, RE Jr, Anderson, Re, Photodynamic therapy of brain tumours. In: Jori, G, Perria, C, eds. Photodynamic Therapy of Tumours and Other Diseases Padova: LibrerÍa Progetto Editore 1985.Google Scholar
17. McCulloch, GAJ, Forbes, IJ, Lee See, K, et al. Phototherapy in malignant brain tumours. In: Doiron, DR, Gomer, CJ, eds. Porphyrin Localization and Treatment of Tumours. New York: AR Liss Inc 1984; 709718.Google Scholar
18. Muller, PJ, Wilson, B, Photodynamic therapy (PDT): cavitary photo-illumination of malignant cerebral tumours using a laser coupled inflatable balloon; a preliminary report. Can J Neurol Sci 1985; 12: 371373.CrossRefGoogle Scholar
19. Muller, PJ, Wilson, BC, Photodynamic therapy of malignant primary brain tumours: clinical effects, post-operative intracranial ICP, and light penetration of brain. Photochem Photobiol 1987; 46: 929936.CrossRefGoogle ScholarPubMed
20. Perria, C, Capuzzo, T, Cavagnaro, G, et al. First attempts at the photodynamic therapy of human gliomas. J Neurosurg Sci 1980; 24: 119129.Google ScholarPubMed
21. Perria, C, Carai, M, Falzoi, A, et al. Photodynamic therapy of malignant tumours: clinical results of, difficulties with, and future prospects for the neurosurgical applications. Neurosurg 1988; 23: 557563.CrossRefGoogle ScholarPubMed
22. Wilson, B, Muller, PJ, Yanche, JC, Instrumentation and light dosimetry for intra-operative photodynamic therapy (PDT) of malignant brain tumours. Phys Med Biol 1986; 32: 125133.CrossRefGoogle Scholar
23. Muller, PJ, Wilson, BC, An update on the penetration depth of 630 nm light in normal and malignant human brain tissue in vivo. Phys Med Biol 1986; 31: 12951297.CrossRefGoogle ScholarPubMed
24. U.S. Hall, ED, Yonkers, PA, Department of Health Education and Welfare — Public Health Service Vital Statistics of the United States 1966. Vital Statistics Rates in the United States 1940-1960 2: Washington D.C. 1968.Google Scholar
25. Cutler, SJ, Young, JL, Third national cancer survey. Incidence data. Natl Cancer Inst Monogr 1975; 411454.Google Scholar
26. Gutin, PH, Wara, WM, Phillips, TL, et al. Hypoxic cell radiosensitizers in the treatment of malignant brain tumours. Neurosurg 1980; 6: 567576.CrossRefGoogle Scholar
27. Payne, J, Simpson, J, Keen, C, et al. Malignant astrocytoma: hyperfractionated and standard radiotherapy with chemotherapy in a randomized prospective clinical trial. Cancer 1982; 50: 23012306.3.0.CO;2-J>CrossRefGoogle Scholar
28. Shin, KH, Muller, PJ, Geggie, PHS. Superfractionation radiation therapy in the treatment of malignant astrocytoma. Cancer 1983; 52: 20402043.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
29. Shin, KH, Urtasun, RC, Thomas, H, et al. Multiple daily fractionated radiation therapy and misonidazole in the management of malignant astrocytoma. Cancer 1985; 56: 758–60.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
30. Walker, MD, Green, SB, Byar, DP, et al. Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignantglioma after surgery. N Engl J Med 1980; 303: 13241329.CrossRefGoogle Scholar