Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-23T20:41:32.092Z Has data issue: false hasContentIssue false

The Pediatric Neurologist as Expert Witness with Particular Reference to Perinatal Asphyxia

Published online by Cambridge University Press:  24 February 2017

Michael I. Shevell*
Affiliation:
Departments of Neurology/Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, and Division of Pediatric Neurology, Montreal Children's Hospital, Montreal, Quebec, Canada
*
Montreal Children's Hospital, 2300 Tupper Street, Room A-514, Montreal, Quebec, Canada H3H 1P3
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The frequency of litigation related to alleged medical malpractice is increasing in Canada. For the neurologist, involvement in such litigation most often takes place in the context of acting as an expert witness and, for the pediatric neurologist, the most common clinical situation for which expertise is requested is that of possible perinatal asphyxia. The medical expert's primary role is to provide necessary guidance and assistance to the court, which may permit the rendering of decisions that are scientifically valid. This article will review the attributes of the medical expert witness. Aspects of perinatal asphyxia cases under litigation that commonly require the assistance of pediatric neurology expertise such as etiology, timing, extent of disability and life expectancy will also be reviewed in detail. The aim is to provide for the neurologist a clearer understanding of the responsibilities inherent in this increasing professional role.

Résumé:

RÉSUMÉ:

La fréquence des litiges pour faute médicale présumée augmente au Canada. Pour le neurologue, son implication dans de telles causes est la plupart du temps comme témoin expert et pour le neuropédiatre, la situation clinique la plus fréquente pour laquelle on demande son expertise est lorsqu'il y a possibilité d'asphyxie périnatale. Le rôle principal de l'expert médical est de fournir les conseils et l'aide nécessaires à la cour afin que les décisions rendues soient scientifiquement valides. Cet article revoit les qualités du témoin expert médical. Les aspects des cas d'asphyxie périnatale faisant l'objet de litiges qui requièrent souvent l'expertise du neuropédiatre tels l'étiologie, la chronologie, le degré d'invalidité et l'espérance de vie sont également revus en détail. Le but de cet article est de fournir au neurologue une meilleure compréhension des responsabilités inhérentes à cette fonction professionnelle à laquelle on a de plus en plus souvent recours.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2001

References

REFERENCES

1. Middlemiss, J. Examining the experts. National 2000;9:3037.Google Scholar
2. Weintraub, M. Expert witness testimony – an update. Neurol Clin 1999;17:363369.Google Scholar
3. Ethics and Practice Committees of the Child Neurology Society. Child Neurologist as Expert Witness. J Child Neurol 1998;13:398401.Google Scholar
4. Weinstein, JB. Expert witness testimony – a trial judge’s perspective. Neurol Clin 1999;17:355362.CrossRefGoogle ScholarPubMed
5. Black’s Law Dictionary. West Publishing Co. (6th Ed). 1990.Google Scholar
6. Mohan, RV. 1994 2 S.C.R.9.Google Scholar
7. Weinstein, J. Improving expert testimony. University of Richmond Law Rev 1986;20:473494.Google Scholar
8. The Ikarian Reefer, 1993 2 Lloyd’s Rep 68.Google Scholar
9. Canadian Medical Protective Association, 1999 Annual Report.Google Scholar
10. Weintraub, MI. Expert witness testimony: a time for self-regulation? Neurology 1995;45:855858.Google Scholar
11. Shield, D. Peer-review of expert medical-legal testimony: a proposal for child neurology. J Child Neurol 1992;7:237239.Google Scholar
12. Nelson, KB. The neurologically impaired child and alleged malpractice at birth. Neurol Clin 1999;17:283293.Google Scholar
13. Swaiman, KF and Russman, BJ. Cerebral Palsy. In: Swaiman, KF, Ashwal, S (Eds): Pediatric Neurology – Principles & Practice (3rd Ed). St. Louis: Mosby 1999; 312324.Google Scholar
14. Nelson, KB, Ellenberg, JH. Antecedents of cerebral palsy, multivariate analysis of risk. N Engl J Med 1986;315(2):8186.Google Scholar
15. Shevell, MI, Majnemer, A, Rosenbaum, P, Abrahamowicz, M. Etiologic yield of subspecialists evaluation of young children with global developmental delay. J Pediatr 2000;136:593598.Google Scholar
16. Blair, E, Stanley, FJ. Intrapartum asphyxia: a rare cause of cerebral palsy. J Pediatr 1988;112:515.Google Scholar
17. Pharoah, POD, Platt, MJ, Cooke, T. The changing epidemiology of cerebral palsy. Arch Dis Child 1996;75:F169.Google Scholar
18. Stanley, FJ, Watson, L. The cerebral palsies in Western Australia: trends, 1968–1981. Am J Obstet Gynecol 1988;158:89.Google Scholar
19. MacGillivray, I, Campbell, DM. The changing pattern of cerebral palsy in Avon. Paediatr Perinat Epidemiol 1995;9:146.Google Scholar
20. Shevell, MI, Majnemer, A, Miller, SP. Neonatal neurologic prognostication: the term asphyxiated newborn. Pediatr Neurol 1999;21:776784.Google Scholar
21. Low, JA, Galbraith, RS, Muir, DW, et al. Motor and cognitive deficits after intrapartum asphyxia in the mature fetus. Am J Obstet Gynecol 1988;158:356361.CrossRefGoogle ScholarPubMed
22. Lebeer, J. How much brain does a mind need? Scientific, clinical and educational implications of ecological plasticity. Dev Med Child Neurol 1998; 40: 352357.Google Scholar
23. Nelson, KB, Leviton, A. How much of neonatal encephalopathy is due to birth asphyxia? Am J Dis Child 1991;145:13251331.Google Scholar
24. Nelson, KB, Emery, ES. Birth asphyxia and the neonatal brain: what do we know and when do we know it? Clin Perinatol 1993;20:327344.Google Scholar
25. Leviton, A, Nelson, KB. Problems with definitions and classifications of newborn encephalopathy. Pediatr Neurol 1992;8:8590.Google Scholar
26. Volpe, JJ. Hypoxic-ischemic encephalopathy: clinical aspects. In: Neurology of the Newborn, 3rd Ed. Philadelphia: WB Saunders, 1995;314369.Google Scholar
27. Freeman, JM, Nelson, KB. Intrapartum asphyxia and cerebral palsy. Pediatrics 1988;82:240249.CrossRefGoogle ScholarPubMed
28. Sarnat, HB, Sarnat, MS. Neonatal encephalopathy following fetal distress: a clinical and electroencephalographic study. Arch Neurol 1976;33:696705.Google Scholar
29. Perlman, JM. Systemic abnormalities in term infants following perinatal asphyxia: relevance to long-term neurologic outcome. Clin Perinatal 1989;16:475484.CrossRefGoogle ScholarPubMed
30. Holmes, GL, Lombroso, CT. Prognostic value of background patterns in the neonatal EEG. J Clin Neurophysiol 1993;10:323352.Google Scholar
31. Majnemer, A, Rosenblatt, B. Evoked potentials as predictors of outcome in neonatal intensive care unit survivors: review of the literature. Pediatr Neurol 1996;14:189195.Google Scholar
32. Majnemer, A, Rosenblatt, B, Riley, P. Prognostic significance of the auditory brain stem evoked response in high-risk neonates. Dev Med Child Neurol 1988;30:4352.CrossRefGoogle ScholarPubMed
33. Whyte, HE. Visual-evoked potentials in neonates following asphyxia. Clin Perinatol 1993;20:451461.CrossRefGoogle ScholarPubMed
34. Lipp-Zwahlen, AE, Deonna, T, Chrzanowski, R, Micheli, JH, Calame, A. Temporal evolution of hypoxic-ischaemic brain lesions in asphyxiated full-term newborns as assessed by computerized tomography. Neuroradiology 1985;127:138144.Google Scholar
35. Barkovich, AJ, Hajnol, BL, Vigneron, D, et al. Prediction of neuromotor outcome in perinatal asphyxia: evaluation of MR scoring systems. Am J Neuroradiol 1998;19:143149.Google Scholar
36. Beaulieu, C, D’Arceuil, H, Hedehus, M, et al. Diffusion weighted magnetic resonance imaging: theory and potential applications to child neurology. Sem Pediatr Neurol 1999;6:87100.Google Scholar
37. Schaefer, GB, Bodensteiner, JB. Evaluation of the child with idiopathic mental retardation. Pediatr Clin North Am 1992; 39:929943.Google Scholar
38. Volpe, JJ. Hypoxic-ischemic encephalopathy: clinical aspects. In: Neurology of the Newborn; 4th Ed. Philadelphia: WB Saunders, 2000: 331394.Google Scholar
39. Hill, A, Volpe, J. Perinatal asphyxia: clinical aspects. Clin Perinatol 1989;16:435457.Google Scholar
40. American Academy of Pediatrics, ACOG. Relationship between perinatal factors and neurologic outcome. In: Poland, R, Freeman, R, eds. Guidelines for Perinal Care. Elk Grove Village, IL: American Academy of Pediatrics, 1992:221224.Google Scholar
41. MacLennan, A, Force, ICPT.A template for defining a causal relation between acute intrapartum events and cerebral palsy: international consensus statement. Br Med J 1999;319:10541059.Google Scholar
42. Robertson, CM, Finer, NN. Long-term follow-up of term neonates with perinatal asphyxia. Clin Perinatol 1993;20:483500.CrossRefGoogle ScholarPubMed
43. Hollier, LM. Can neurological injury be timed? Sem Perinatol 2000; 24: 204214.CrossRefGoogle ScholarPubMed
44. Benirschke, K. The placenta in the litigation process. Am J Obstet Gynecol 1990;162:14451450.Google Scholar
45. Miller, PW, Coen, RW, Benirschke, K. Dating the time interval from meconium passage to birth. Obstet Gynecol 1985;66:459462.Google Scholar
46. Fujikura, T, Klionsky, B. The significance of meconium staining. Am J Obstet Gynecol 1975;121:4550.Google Scholar
47. Strauss, DJ, Shavelle, RM, Anderson, TW. Life expectancy in children with cerebral palsy. Pediatr Neurol 1998;13:143.Google Scholar
48. Chrichton, JV, MacKinnon, M, White, CP. The life expectancy of persons with cerebral palsy. Dev Med Child Neurol 1995;37:567576.Google Scholar
49. Strauss, DJ, Shavelle, RM. Life expectancy of adults with cerebral palsy. Dev Med Child Neurol 1998;40:369375.Google Scholar