Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-21T23:25:03.861Z Has data issue: false hasContentIssue false

Pathology of Mitochondrial Encephalomyopathies

Published online by Cambridge University Press:  02 December 2014

Harvey B. Sarnat
Affiliation:
University of Calgary Faculty of Medicine and Alberta Children's Hospital, Calgary, Alberta, Canada
José Marín-García
Affiliation:
Molecular Cardiology and Neuromuscular Institute, Highland Park, New Jersey, USA
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Muscle biopsy provides the best tissue to confirm a mitochondrial cytopathy. Histochemical features often correlate with specific syndromes and facilitate the selection of biochemical and genetic studies. Ragged-red fibres nearly always indicate a combination defect of respiratory complexes I and IV. Increased punctate lipid within myofibers is a regular feature of Kearns-Sayre and PEO, but not of MELAS and MERRF. Total deficiency of succinate dehydrogenase indicates a severe defect in Complex II; total absence of cytochrome-c-oxidase activity in all myofibres correlates with a severe deficiency of Complex IV or of coenzyme-Q10. The selective loss of cytochrome-c-oxidase activity in scattered myofibers, particularly if accompanied by strong succinate dehydrogenase staining in these same fibres, is good evidence of mitochondrial cytopathy and often of a significant mtDNA mutation, though not specific for Complex IV disorders. Glycogen may be excessive in ragged-red zones. Ultrastructure provides morphological evidence of mitochondrial cytopathy, in axons and endothelial cells as well as myocytes. Abnormal axonal mitochondria may contribute to neurogenic atrophy of muscle, a secondary chronic feature. Quantitative determinations of respiratory chain enzyme complexes, with citrate synthase as an internal control, confirm the histochemical impressions or may be the only evidence of mitochondrial disease. Biological and technical artifacts may yield falsely low enzymatic activities. Genetic studies screen common point mutations in mtDNA. The brain exhibits characteristic histopathological alterations in mitochondrial diseases. Skin biopsy is useful for mitochondrial ultrastructure in smooth erector pili muscles and axons; skin fibroblasts may be grown in culture. Mitochondrial alterations occur in many nonmitochondrial diseases and also may be induced by drugs and toxins.

Résumé:

RÉSUMÉ:

La biopsie musculaire est le meilleur tissu pour obtenir confirmation d’une cytopathie mitochondriale. Il existe souvent une corrélation entre les caractéristiques histochimiques et un syndrome spécifique, ce qui facilite le choix d’études biochimiques et génétiques. La présence de ragged-red fibres indique presque toujours un défaut dans les complexes respiratoires I et IV. On observe une augmentation de coloration ponctuée de lipides dans les fibres musculaires dans les syndromes de Kearns-Sayre et PEO, mais non dans les syndromes MELAS et MERRF. Un déficit total en SDH indique qu’il existe un défaut sévère du Complexe II et il existe une corrélation entre une absence totale d’activité COX dans toutes les fibres musculaires et un déficit sévère en Complexe IV ou en coenzyme Q10. La perte elective d’activité COX dans des fibres musculaires éparses, surtout si elle est accompagnée d’une forte coloration SDH dans ces mêmes fibres, est fortement en faveur d’une cytopathie mitochondriale et souvent d’une mutation importante de l’ADN mitochondrial, bien que non spécifique des maladies du Complexe IV. La concentration en glycogène peut être excessive dans les zones de ragged-red fibres. L’examen de l’ultrastructure démontre des changements morphologiques d’une cytopathie mitochondriale dans les axones et dans les cellules endothéliales ainsi que dans les myocytes. Les mitochondries axonales anormales contribuent probablement à l’atrophie musculaire neurogénique, une manifestation secondaire chronique. Des évaluations quantitatives des complexes enzymatiques de la chaîne respiratoire, utilisant la citrate synthase comme contrôle interne, confirment les impressions histochimiques ou peuvent être les seules observations en faveur d’une maladie mitochondriale. Des artefacts biologiques et techniques peuvent fournir des niveaux d’activité enzymatique faussement bas. Des mutations ponctuelles fréquentes de l’ADN mitochondrial peuvent être détecté par des études génétiques. Au niveau du cerveau, on retrouve des altérations histopathologiques caractéristiques dans les maladies mitochondriales. La biopsie cutanée est utile pour l’examen de l’ultrastructure mitochondriale des muscles lisses érecteurs des poils et des axones; les fibroblastes obtenus à partir de la peau peuvent être cultivés. Des changements mitochondriaux peuvent être observés dans plusieurs maladies non mitochondriales et peuvent également être induits par des médicaments et des toxines.

Type
Review Articles
Copyright
Copyright © The Canadian Journal of Neurological 2005

References

1. DiMauro, S, Bonilla, E, DeVivo, DC. Does the patient have amitochondrial encephalopathy? J Child Neurol 1999;14(Suppl 1):S23–S35.CrossRefGoogle Scholar
2. DiMauro, S, Hirano, M, Kaufmann, P, et al. Clinical features andgenetics of myoclonic epilepsy with ragged red fibers. Adv Neurol 2002;89:217229.Google Scholar
3. Darin, N, Oldfors, A, Moslemi, A-R, Holme, E, Tulinius, M. Genotypesand clinical phenotypes in children with cytochrome-c-oxidase deficiency. Neuropediatrics 2003;34:311317.Google Scholar
4. Miles, L, Wong, B, Hofmann, I, Morehart, P, Bove, KE. EM assessment of mitochondria correlates poorly with ETC/FAO defects in suspected disorders of energy metabolism. Lab Invest 2003 (abstract).Google Scholar
5. Sakuta, R, Honzawa, S, Murakami, N, Goto, Y, Nagai, T. Atypical MELAS associated with mitochondrial tRNALys gene A8296G mutation. Pediatr Neurol 2002;27:397400.CrossRefGoogle ScholarPubMed
6. Melone, MAB, Tessa, A, Petrini, S, et al. Revelation of a newmitochondrial DNA mutation (G121147A) in a MELAS/MERRF phenotype. Arch Neurol 2004;61:269272.CrossRefGoogle Scholar
7. Nishigaki, Y, Tadesse, S, Bonilla, E, et al. A novel mitochondrialtRNALeu(UUR) mutation in a patient with features of MERRF and Kearns-Sayre syndrome. Neuromuscul Disord 2003;13:334340.CrossRefGoogle Scholar
8. Schröder, R, Vielhaber, S, Wiedemann, FR, et al. New insights intothe metabolic consequences of large-scale mtDNA deletions: a quantitative analysis of biochemical, morphological and genetic findings in human skeletal muscle. J Neuropathol Exp Neurol 2000;59:353360.CrossRefGoogle Scholar
9. Vogel, H. Mitochondrial myopathies and the role of the pathologistin the molecular era. J Neuropathol Exp Neurol 2001;60:217227.CrossRefGoogle ScholarPubMed
10. Rollins, S, Prayson, RA, McMahon, JT, Cohen, BH. Diagnostic yieldmuscle biopsy in patients with clinical evidence of mitochondrial cytopathy. Am J Clin Pathol 2001;116:326330.CrossRefGoogle ScholarPubMed
11. Carpenter, S, Karpati, G. Pathology of Skeletal Muscle. 2nd ed. NewYork: Oxford University Press. 2001:453459.Google Scholar
12. Vielhaber, S, Varlamov, DA, Kudina, TA, et al. Expression pattern of mitochondrial respiratory chain enzymes in skeletal muscle of patients harboring the A3243G point mutation or large-scale deletions of mitochondrial DNA. J Neuropathol Exp Neurol 2002;61:885895.CrossRefGoogle ScholarPubMed
13. Oldfors, A, Tulinius, M. Mitochondrial encephalomyopathies. J Neuropathol Exp Neurol 2003;62:217227.CrossRefGoogle ScholarPubMed
14. Schapira, AHV. Mitochondrial Function and Dysfunction. NewYork: Academic Press, 2003.Google Scholar
15. Ricoy-Campo, JR, Cabello, A. Mitocondriopatías. Rev Neurol(Barcelona) 2003;37:775779.Google Scholar
16. Kyriakides, T, Drousiotou, A, Panasopoulou, A, et al. A comparativemorphological study in 33 cases of respiratory chain encephalomyopathies. Acta Myolog 2003;22:4852.Google Scholar
17. Taylor, RW, Schaefer, AM, Barron, MJ, McFarland, R, Turnbull, DM. The diagnosis of mitochondrial muscle disease. Neuromuscul Disord 2004;14:237245.CrossRefGoogle ScholarPubMed
18. Marín-García, J, Goldenthal, MJ, Sarnat, HB. Probing striated musclemitochondrial phenotype in neuromuscular disorders. Pediatr Neurol 2003;29:2633.CrossRefGoogle ScholarPubMed
19. Fardeau, M, Tomé, FMS, Rolland, JC. Congenital neuromusculardisorder with predominant mitochondrial changes in type II muscle fibers. Acta Neuropathol 1981; (Suppl 7):279282.Google ScholarPubMed
20. Peyronnard, J-M, Charron, L, Bellavance, A, Marchand, L. Neuropathy and mitochondrial myopathy. Ann Neurol 1980;7:262268.CrossRefGoogle ScholarPubMed
21. Yiannikas, C, McLeod, JG, Pollard, JD, Baverstock, J. Peripheralneuropathy associated with mitochondrial myopathy. Ann Neurol 1986;20:249257.CrossRefGoogle Scholar
22. McFarland, R, Taylor, RW, Chinnery, PF, Howell, N, Turnbull, DM. Anovel sporadic mutation in cytochrome-c-oxidase subunit II as a cause of rhabdomyolysis. Neuromuscul Disord 2004;14:162166.CrossRefGoogle Scholar
23. Schapira, AHV. Primary and secondary defects of the mitochondrialrespiratory chain. J Inherit Metab Dis 2002;25:207214.CrossRefGoogle Scholar
24. Tsao, CY, Mendell, JR, Lo, WD, Luquette, M, Rusin, J. Mitochondrialrespiratory-chain defects presenting as nonspecific features in children. J Child Neurol 2000;15:445448.CrossRefGoogle ScholarPubMed
25. Bonilla, E, Schotland, DL, DiMauro, S, Aldover, B. Electroncytochemistry of crystalline inclusions in human skeletal muscle mitochondria. J Ultrastruct Res 1975;51:404408.CrossRefGoogle Scholar
26. Bhawat, AG, Ross, RC. Hepatic intramitochondrial crystalloids. ArchPathol 1971;91:7077.Google Scholar
27. DiMauro, S, Nicholson, JF, Hays, AP, et al. Benign infantilemitochondrial myopathy due to reversible cytochrome-c-oxidase deficiency. Ann Neurol 1983;14:226234.CrossRefGoogle ScholarPubMed
28. Wada, H, Woo, M, Nishio, H, et al. Vascular involvement in benigninfantile mitochondrial myopathy caused by reversible cytochrome-c-oxidase deficiency. Brain Devel 1996;18:263268.CrossRefGoogle ScholarPubMed
29. Castro-Gago, M, Eirís, J, Pintos, E, et al. Miopatía congénita benignaasociada a deficiencia parcial de los complejos I y III de la cadena respiratoria mitocondrial. Rev Neurol (Barcelona) 2000;31:838841.Google Scholar
30. Taylor, RW, Birch-Machin, MA, Barlett, K, Turnbull, DM. Succinate-cytochrome c reductase: assessment of its value in the investigation of defects of the respiratory chain. Biochim Biophys Acta 1993;116:261265.CrossRefGoogle Scholar
31. Marín-García, J, Goldenthal, MJ. Mitochondrial biogenesis defectsand neuromuscular disorders. Pediatr Neurol 2000;22:122129.CrossRefGoogle Scholar
32. Marín-García, J, Goldenthal, MJ, Sarnat, HB. Kearns-Sayre syndromewith a novel mitochondrial DNA deletion. J Child Neurol 2000;15:555558.CrossRefGoogle Scholar
33. Marín-García, J, Goldenthal, MJ, Flores-Sarnat, L, Sarnat, HB. Severemitochondrial cytopathy with complete A-V block, PEO and mtDNA deletions. Pediatr Neurol 2002;27:213216.CrossRefGoogle Scholar
34. Servidei, S. Mitochondrial encephalomyopathies: Gene mutations. Neuromuscul Disord 2004;14:107116.Google Scholar
35. Santos, JH, Hunakova, L, Chen, Y, Bortner, C, Van Houten, B. Cell-sorting experiments link persistent mitochondrial DNA damage with loss of mitochondrial membrane potential and apoptotic cell death. J Biol Chem 2003;278:17281734.CrossRefGoogle ScholarPubMed
36. Poulton, J, Deadman, ME, Turnbull, DM, Lake, B, Gardiner, RM. Detection of mitochondrial DNA deletions in blood using the polymerase chain reaction: non-invasive diagnosis of mitochondrial myopathy. Clin Genet 1991;39:3338.CrossRefGoogle ScholarPubMed
37. De Coo, IF, Gussinklo, T, Arts, PJ, Van Oost, BA, Smeets, HJ. A PCRtest for progressive external ophthalmoplegia and Kearns-Sayre syndrome on DNA from blood samples. J Neurol Sci 1997;149:3740.CrossRefGoogle Scholar
38. Sparaco, M, Bonilla, E, DiMauro, S, Powers, JM. Neuropathology of mitochondrial encephalomyopathies due to mitochondrial DNA defects. J Neuropathol Exp Neurol 1993;52:110.CrossRefGoogle ScholarPubMed
39. Lake, BD. Peroxisomal and mitochondrial disorders. In: Graham, DI, Lantos, PL, (Eds). Greenfield’s Neuropathology. Arnold Press; New York, London: Oxford University Press, 2002.Google Scholar
40. Tanji, K, Hays, AP, Bonilla, E. Mitochondrial alterations inependymal cells of Kearns-Sayre syndrome. J Neuropathol ExpNeurol 2003;62:567 (abstract).Google Scholar
41. Sullivan, PG, Dubé, C, Dorenbos, K, Steward, O, Baram, TZ. Mitochondrial uncoupling protein-2 protects the immature brain from excitotoxic neuronal death. Ann Neurol 2003;53:711717.CrossRefGoogle ScholarPubMed
42. Jordán, J, Galindo, MF, Tornero, D, González-García, C, Ceña, V. Roleof mitochondria in neuronal death. Rev Neurol (Barcelona) 2003;37:1058 (abstract).Google Scholar
43. Kubota, Y, Ishii, T, Sugihara, H, Goto, Y-I, Mizoguchi, M. Skinmanifestations of a patient with mitochondrial encephalomyo pathy with lactic acidosis and strokelike episodes (MELAS syndrome). J Am Acad Dermatol 1999;41:469473.CrossRefGoogle Scholar
44. James, AM, Wei, YH, Pang, CY, Murphy, MP. Altered mitochondrialfunction in fibroblasts containing MELAS or MERRF mitochondrial DNA mutations. Biochem J 1996;318(pt 2):401407.CrossRefGoogle ScholarPubMed
45. Mandel, H, Hartman, C, Berkowitz, D, et al. The hepaticmitochondrial DNA depletion syndrome: ultrastructural changes in liver biopsies. Hepatology 2001;34:776784.CrossRefGoogle Scholar
46. Saada, A, Shaaag, A, Mandel, H, et al. Mutant mitochondrialthymidine kinase in mitochondrial DNA depletion myopathy. Nature Genet 2001;29:342344.CrossRefGoogle ScholarPubMed
47. Elpeleg, O, Mandel, H, Saada, A. Depletion of the other genome-mitochondrial DNA depletion syndromes in humans. J Mol Med 2002;80;389396.CrossRefGoogle ScholarPubMed
48. Arnon, S, Avram, R, Dolfin, T, et al. Mitochondrial DNA depletionpresenting prenatally with skin edema and multisystem disease immediately after birth. Prenat Diagn 2002;22:3437.CrossRefGoogle ScholarPubMed
49. Salviati, L, Sacconi, S, Mancuso, M, et al. Mitochondrial DNAdepletion and dGK gene mutations. Ann Neurol 2002;52:311317.CrossRefGoogle Scholar
50. Mancuso, M, Salviati, L, Sacconi, S, Otaegui, D, et al. MitochondrialDNA depletion: mutations in thymidine kinase gene with myopathy and SMA. Neurology 2002;59:11971202.CrossRefGoogle Scholar
51. Hargreaves, P, Rahman, S, Guthrie, P, et al. Diagnostic value ofsuccinate ubiquinone reductase activity in the identification of patients with mitochondrial DNA depletion. J Inherit Metab Dis 2002;25:716.CrossRefGoogle Scholar
52. Mancuso, M, Filosto, M, Bonilla, E, et al. Mitochondrial myopathy ofchildhood associated with mitochondrial DNA depletion and a monozymgous mutation (T77M) in the TK2 gene. Arch Neurol 2003;60:10071009.CrossRefGoogle Scholar
53. Marín-García, J, Ananthakrishnan, R, Goldenthal, MJ, Filiano, JJ, Pérez-Atayde, A. Cardiac mitochondrial dysfunction and DNA depletion in children with hypertrophic cardiomyopathy. J Inherit Metab Dis 1997;20:674680.CrossRefGoogle ScholarPubMed
54. Holmuhamedov, E, Jahangir, A, Bienengraeber, M, Lewis, LD, Terzic, A. Deletion of mtDNA disrupts mitochondrial function and structure, but not biogenesis. Mitochondrion 2003;3:1319.CrossRefGoogle Scholar
55. Naviaux, RK, Nguyen, KV. POLG mutations associated with Alper’ssyndrome and mitochondrial DNA depletion. Ann Neurol 2004;55:706712.CrossRefGoogle ScholarPubMed
56. Fernández, R, Fernández, JM, Cervera, C, et al. Adult glycogenosis IIwith paracrystalline mitochondrial inclusions and Hirano bodies in skeletal muscle. Neuromuscul Disord 1999;9:136143.CrossRefGoogle Scholar
57. Pons, R, Andreetta, F, Wa, CH, et al. Mitochondrial myopathysimulating spinal muscular atrophy. Pediatr Neurol 1996;15:153158.CrossRefGoogle ScholarPubMed
58. Berger, A, Mayr, JA, Meierhofer, D, et al. Severe depletion ofmitochondrial DNA in spinal muscular atrophy. Acta Neuropathol 2003;105:245251.CrossRefGoogle Scholar
59. Nikali, K, Isosomppi, J, Lonnqvist, T, et al. Toward cloning of a novelataxia gene: refined assignment and physical map of the IOSCA locus (SCA8) on 110q24. Genomics 1997;39:185191.CrossRefGoogle Scholar
60. Nikali, K, Lönnqvist, T, Suomalainen, A, Peltonen, L. Infantile onsetspinocerebellar ataxia is caused by recessive mutations in a gene encoding a mitochondrial protein. Eur J Paediatr Neurol 2003;7:285 (abstract).Google Scholar
61. Lamperti, C, Naini, A, Hirano, M, et al. Cerebellar ataxia andcoenzyme Q10 deficiency. Neurology 2003;60:12061208.CrossRefGoogle ScholarPubMed
62. Rifai, Z, Welle, S, Kamp, C, Thornton, CA. Ragged-red fibers innormal aging and inflammatory myopathy. Ann Neurol 1995;37:2429.CrossRefGoogle Scholar
63. Carpenter, S, Karpati, G, Johnston, W, Shoubridge, E. Coexistence of polymyositis (PM) with mitochondrial myopathy. Neurology 1992;42 (Suppl 3):388 (abstract).Google Scholar
64. Schuelke, M, Krude, H, Finckh, B, et al. Septo-optic dysplasiaassociated with a new mitochondrial cytochrome b mutation. Ann Neurol 2002;51:388392.CrossRefGoogle Scholar
65. Sarnat, HB, Machin, G, Darwish, HZ, Rubin, SZ. Mitochondrialmyopathy of cerebro-hepato-renal (Zellweger) syndrome. Can J Neurol Sci 1983;10:170177.CrossRefGoogle ScholarPubMed
66. Kelley, RI. The cerebrohepatorenal syndrome of Zellweger. Morphological and metabolic aspects. Am J Med Genet 1983;16:503517.CrossRefGoogle ScholarPubMed
67. Lorenc, A, Bryk, J, Golik, P, et al. Homoplasmic MELAS A3243GmtDNA mutation in a colon cancer sample. Mitochondrion 2003;3:119124.CrossRefGoogle Scholar
68. Wu, S-P, Shuy, M-K, Liou, H-H, Gau, C-S, Lin, C-J. Interaction between anticonvulsants and human placental carnitine transporter. Epilepsia 2004;45:204210.CrossRefGoogle ScholarPubMed
69. Yerroum, M, Pham-Dang, C, Authier, F-J, et al. Cytochrome c oxidasedeficiency in the muscle of patients with zidovudine myopathy is segmental and affects both mitochondrial DNA- and nuclear DNA-encoded subunits. Acta Neuropathol 2000;100:8286.CrossRefGoogle Scholar
70. Phillips, PS, Haas, RH, Bannykh, S, et al. Statin-associated myopathywith normal creatine kinase levels. Ann Intern Med 2002;137:581585.CrossRefGoogle Scholar
71. Silver, MA, Langsjoen, PH, Szabo, S, Patil, H, Zelinger, A. Statincardiomyopathy? A potential role for Co-Enzyme Q10 therapy for statin-induced changes in diastolic LV performance: description of a clinical protocol. Biofactors 2003;18:125127.CrossRefGoogle ScholarPubMed
72. Melegh, B, Trombitás, K. Valproate treatment induces lipid globuleaccumulation with ultrastructural abnormalities of mitochondria in skeletal muscles. Neuropediatrics 1997;28:257261.CrossRefGoogle Scholar
73. Mitsui, T, Umaki, Y, Nagasawa, M, et al. Mitochondrial damage inpatients with long-term corticosteroid therapy: development of oculoskeletal symptoms similar to mitochondrial disease. ActaNeuropathol 2002;104:260266.Google Scholar
74. Naumann, M, Reiners, K, Gold, R, et al. Mitochondrial dysfunction inadult-onset myopathies with structural abnormalities. Acta Neuropathol 1995;89:152157.CrossRefGoogle ScholarPubMed
75. Johnston, W, Karpati, G, Carpenter, S, et al. Late-onset mitochondrialmyopathy. Ann Neurol 1995;37:1623.CrossRefGoogle Scholar
76. Grau, JM, Casademont, J, Cardellach, F, Fernández-Solá, J. Aging andmitochondrial abnormalities. Ann Neurol 1995;38:273274 (letter).CrossRefGoogle Scholar
77. Brierley, EJ, Johnson, MA, Bowman, A, et al. Mitochondrial functionin muscle from elderly athletes. Ann Neurol 1997;41:114116.CrossRefGoogle Scholar
78. Brierley, EJ, Johnson, MA, Lightowlers, RN, et al. Role of mitochon-drial DNA mutations in human aging: implications for the central nervous system and muscle. Ann Neurol 1998;43:217223.CrossRefGoogle Scholar
79. Kimata, KG, Gordan, L, Ajax, ET, et al. A case of late-onset MELAS. Arch Neurol 1998;55:722725.CrossRefGoogle ScholarPubMed
80. Chow, CK. Vitamin E regulation of mitochondrial superoxidegeneration. Biol Signals Recept 2001;10:112124.CrossRefGoogle Scholar
81. Komura, K, Hobbiebrunken, E, Ekkehard, KG, Wilichowski, KG, Hanefeld, FA. Effectiveness of creatine myohydrate in mitochon-drial encephalomyopathies. Pediatr Neurol 2003;28:5358.CrossRefGoogle Scholar
82. Matthews, PM, Ford, B, Dandurand, RJ, et al. Coenzyme Q10 withmultiple vitamins is generally ineffective in treatment of mitochondrial disease. Neurology 1993;43:884890.CrossRefGoogle Scholar
83. Li, X, May, MM. Location and recycling of mitochondrial α-tocopherol. Mitochondrion 2003;3:2938.CrossRefGoogle ScholarPubMed
84. Linnane, AW, Kopsidas, G, Zhang, C, et al. Cellular redox activity ofcoenzyme Q10: effect of CoQ10 supplementation on humanskeletal muscle. Free Radical Res 2002;36:445453.CrossRefGoogle Scholar
85. Geromel, V, Darin, N, Chrétien, D, et al. Coenzyme Q(10) andidebenone in the therapy of respiratory chain diseases: rationale and comparative benefits. Mol Genet Metabol 2002;77:2130.CrossRefGoogle ScholarPubMed
86. Van Maldergem, L, Trijbels, F, DiMauro, S, et al. Coenzyme Q-responsive Leigh’s encephalopathy in two sisters. Ann Neurol 2002;52:750754.CrossRefGoogle ScholarPubMed
87. Huang, CC, Kuo, HC, Chu, CC, Kao, LY. Rapid visual recovery aftercoenzyme Q10 treatment of Leber hereditary optic neuropathy (comment). J Neuroophthalmol 2002;22:66.CrossRefGoogle Scholar
88. Thomas, L. Organelles as organisms. In: The Life of a Cell. New York: Viking Press, 1974:72.Google Scholar