Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-23T20:57:59.439Z Has data issue: false hasContentIssue false

Pathologic Evaluation of the Supraoptic and Paraventricular Nuclei in Dementia

Published online by Cambridge University Press:  02 December 2014

David Diodati
Affiliation:
Cognitive Neurology and Alzheimer Research Centre, St. Joseph's Hospital
Lee Cyn-Ang
Affiliation:
Department of Pathology, Schulich School of Medicine
Andrew Kertesz
Affiliation:
Cognitive Neurology and Alzheimer Research Centre, St. Joseph's Hospital Department of Clinical Neurological Sciences, Schulich School of Medicine
Elizabeth Finger*
Affiliation:
Cognitive Neurology and Alzheimer Research Centre, St. Joseph's Hospital Department of Clinical Neurological Sciences, Schulich School of Medicine Department of Psychology, University of Western Ontario, London, Ontario, Canada
*
Department of Clinical Neurological Sciences, University of Western Ontario, B10-004, 339 Windermere Rd, London, Ontario, N6A 5A5, Canada.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

The neuropeptide oxytocin, produced in the supraoptic (SON) and paraventricular nuclei (PVN) of the hypothalamus, is now understood to function as a neurotransmitter critical for various aspects of social cognition and pro-social behaviour. While patients with Frontotemporal dementia (FTD) display prominent and progressive deficits in such social behaviours, the integrity of these nuclei in FTD is not known.

Methods:

We conducted a quantitative neuropathologic examination of the SON and PVN from patients with FTLD with TDP-43 proteinopathy, Alzheimer's disease, Lewy body disease and controls to determine whether significant pathologic changes or neuronal loss may contribute to the striking behavioural symptoms of FTD.

Results:

Contrary to predictions, we found both nuclei to be free of significant pathologic change (TDP-43) in FTLD. In contrast, tau related pathology was found in the PVN in Alzheimer's disease, and alpha-synuclein pathology in the SON in patients with Lewy body dementia.

Conclusions:

These results indicate that the SON and PVN are resistant to FTLD TDP-43 pathology. They also support prior suggestions that the SON is resistant to Alzheimer's disease (AD) related pathology, and extend this to demonstrate SON susceptibility to alpha-synuclein pathology in patients with Lewy body dementia.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 2012

References

1Kertesz, A, Davidson, W, Fox, H.Frontal behavioral inventory: diagnostic criteria for frontal lobe dementia. Can J Neurol Sci. 1997 Feb;24(1):2936.Google Scholar
2Miller, BL, Darby, A, Benson, DF, Cummings, JL, Miller, MH.Aggressive, socially disruptive and antisocial behaviour associated with fronto-temporal dementia. Br J Psychiatry. 1997 Feb;170:1504.CrossRefGoogle ScholarPubMed
3Neary, D, Snowden, JS, Gustafson, L, et al.Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology. 1998 Dec;51(6):154654.CrossRefGoogle ScholarPubMed
4Rankin, KP, Gorno-Tempini, ML, Allison, SC, et al.Structural anatomy of empathy in neurodegenerative disease. Brain. 2006 Nov;129(Pt 11):294556.Google Scholar
5Rankin, KP, Kramer, JH, Mychack, P, Miller, BL.Double dissociation of social functioning in frontotemporal dementia. Neurology. 2003 Jan 28;60(2): 26671.Google Scholar
6Fernandez-Duque, D, Black, SE.Impaired recognition of negative facial emotions in patients with frontotemporal dementia. Neuropsychologia. 2005;43(11):167387.Google Scholar
7Keane, J, Calder, AJ, Hodges, JR, Young, AW.Face and emotion processing in frontal variant frontotemporal dementia. Neuropsychologia. 2002;40(6):65565.CrossRefGoogle ScholarPubMed
8Diehl-Schmid, J, Pohl, C, Ruprecht, C, Wagenpfeil, S, Foerstl, H, Kurz, A.The Ekman 60 Faces Test as a diagnostic instrument in frontotemporal dementia. Arch Clin Neuropsychol. 2007 May; 22(4):45964.Google Scholar
9Gregory, C, Lough, S, Stone, V, et al.Theory of mind in patients with frontal variant frontotemporal dementia and Alzheimer’s disease: theoretical and practical implications. Brain. 2002 Apr;125(Pt 4):75264.CrossRefGoogle ScholarPubMed
10Lough, S, Kipps, CM, Treise, C, Watson, P, Blair, JR, Hodges, JR.Social reasoning, emotion and empathy in frontotemporal dementia. Neuropsychologia. 2006;44(6):9508.CrossRefGoogle ScholarPubMed
11Dierickx, K, Vandesande, F.Immunocytochemical demonstration of separate vasopressin-neurophysin and oxytocin-neurophysin neurons in the human hypothalamus. Cell Tissue Res. 1979 Feb 15;196(2): 20312.Google Scholar
12Goodson, JL, Thompson, RR.Nonapeptide mechanisms of social cognition, behavior and species-specific social systems. Curr Opin Neurobiol. 2010 Dec;20(6):78494.Google Scholar
13Ross, HE, Cole, CD, Smith, Y, et al.Characterization of the oxytocin system regulating affiliative behavior in female prairie voles. Neuroscience. 2009 Sep 15;162(4): 892903.Google Scholar
14Schorscher-Petcu, A, Dupre, A, Tribollet, E.Distribution of vasopressin and oxytocin binding sites in the brain and upper spinal cord of the common marmoset. Neurosci Lett. 2009 Sep 25;461(3): 21722.Google Scholar
15Smeltzer, MD, Curtis, JT, Aragona, BJ, Wang, Z.Dopamine, oxytocin, and vasopressin receptor binding in the medial prefrontal cortex of monogamous and promiscuous voles. Neurosci Lett. 2006 Feb 13;394(2): 14651.Google Scholar
16Wang, Z, Moody, K, Newman, JD, Insel, TR.Vasopressin and oxytocin immunoreactive neurons and fibers in the forebrain of male and female common marmosets (Callithrix jacchus). Synapse. 1997 Sep;27(1):1425.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
17Mann, DM, South, PW, Snowden, JS, Neary, D.Dementia of frontal lobe type: neuropathology and immunohistochemistry. J Neurol Neurosurg Psychiatry. 1993 Jun;56(6):60514.CrossRefGoogle ScholarPubMed
18Munoz, DG, Dickson, DW, Bergeron, C, Mackenzie, IR, Delacourte, A, Zhukareva, V.The neuropathology and biochemistry of frontotemporal dementia. Ann Neurol. 2003;54 Suppl 5:S248.Google Scholar
19Cairns, NJ, Bigio, EH, Mackenzie, IR, et al.Neuropathologic diagnostic and nosologic criteria for frontotemporal lobar degeneration: consensus of the Consortium for Frontotemporal Lobar Degeneration. Acta Neuropathol. 2007 Jul;114(1):522.Google Scholar
20Donaldson, ZR, Young, LJ.Oxytocin, vasopressin, and the neurogenetics of sociality. Science. 2008 Nov 7;322(5903): 9004.Google Scholar
21Insel, TR, Young, LJ.The neurobiology of attachment. Nat Rev Neurosci. 2001 Feb;2(2):12936.Google Scholar
22Pedersen, CA, Caldwell, JD, Peterson, G, Walker, CH, Mason, GA.Oxytocin activation of maternal behavior in the rat. Ann NY Acad Sci. 1992 Jun 12;652:5869.Google Scholar
23Kendrick, KM, Keverne, EB, Baldwin, BA.Intracerebroventricular oxytocin stimulates maternal behaviour in the sheep. Neuroendocrinology. 1987 Jun;46(1):5661.Google Scholar
24Fahrbach, SE, Morrell, JI, Pfaff, DW.Possible role for endogenous oxytocin in estrogen-facilitated maternal behavior in rats. Neuroendocrinology. 1985 Jun;40(6):52632.CrossRefGoogle ScholarPubMed
25Baumgartner, T, Heinrichs, M, Vonlanthen, A, Fischbacher, U, Fehr, E.Oxytocin shapes the neural circuitry of trust and trust adaptation in humans. Neuron. 2008 May 22;58(4): 63950.Google Scholar
26Kosfeld, M, Heinrichs, M, Zak, PJ, Fischbacher, U, Fehr, E.Oxytocin increases trust in humans. Nature. 2005 Jun 2;435(7042): 6736.CrossRefGoogle ScholarPubMed
27Hurlemann, R, Patin, A, Onur, OA, et al.Oxytocin enhances amygdala-dependent, socially reinforced learning and emotional empathy in humans. J Neurosci. 2010 Apr 7;30(14): 49995007.Google Scholar
28Di Simplicio, M, Massey-Chase, R, Cowen, PJ, Harmer, CJ.Oxytocin enhances processing of positive versus negative emotional information in healthy male volunteers. J Psychopharmacol. 2009 May;23(3):2418.Google Scholar
29Guastella, AJ, Kenyon, AR, Alvares, GA, Carson, DS, Hickie, IB.Intranasal arginine vasopressin enhances the encoding of happy and angry faces in humans. Biol Psychiatry. 2010 Jun 15; 67 (12):12202.CrossRefGoogle ScholarPubMed
30Marsh, AA, Yu, HH, Pine, DS, Blair, RJ.Oxytocin improves specific recognition of positive facial expressions. Psychopharmacology (Berl). 2010 Apr;209(3):22532.CrossRefGoogle ScholarPubMed
31Domes, G, Heinrichs, M, Michel, A, Berger, C, Herpertz, SC.Oxytocin improves “mind-reading” in humans. Biol Psychiatry. 2007 Mar 15;61(6): 7313.CrossRefGoogle ScholarPubMed
32Hollander, E, Bartz, J, Chaplin, W, et al.Oxytocin increases retention of social cognition in autism. Biol Psychiatry. 2007 Feb 15; 61 (4):498503.Google Scholar
33Hollander, E, Novotny, S, Hanratty, M, et al.Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger’s disorders. Neuropsychopharmacology. 2003 Jan;28 (1):1938.Google Scholar
34Stopa, EG, Volicer, L, Kuo-Leblanc, V, et al.Pathologic evaluation of the human suprachiasmatic nucleus in severe dementia. J Neuropathol Exp Neurol. 1999 Jan;58(1):2939.Google Scholar
35Braak, H, Braak, E.Pick’s disease: cytoskeletal changes in the hypothalamic lateral tuberal nucleus. Brain Res. 1998 Aug 17; 802(1-2):11924.CrossRefGoogle ScholarPubMed
36Piguet, O, Petersen, A, Yin Ka Lam, B, et al.Eating and hypothalamus changes in behavioral-variant frontotemporal dementia. Ann Neurol. 2011 Feb;69(2):3129.Google Scholar
37Goudsmit, E, Hofman, MA, Fliers, E, Swaab, DF.The supraoptic and paraventricular nuclei of the human hypothalamus in relation to sex, age and Alzheimer’s disease. Neurobiol Aging. 1990 Sep-Oct;11(5):52936.Google Scholar
38Swaab, DF, Grundke-Iqbal, I, Iqbal, K, Kremer, HP, Ravid, R, van de Nes, JA.Tau and ubiquitin in the human hypothalamus in aging and Alzheimer’s disease. Brain Res. 1992 Sep 11;590(1-2): 23949.Google Scholar
39van de Nes, JA, Kamphorst, W, Ravid, R, Swaab, DF.The distribution of Alz-50 immunoreactivity in the hypothalamus and adjoining areas of Alzheimer’s disease patients. Brain. 1993 Feb;116 (Pt 1): 10315.CrossRefGoogle ScholarPubMed
40Langston, JW, Forno, LS.The hypothalamus in Parkinson disease. Ann Neurol. 1978 Feb;3(2):12933.Google Scholar
41Purba, JS, Hofman, MA, Swaab, DF.Decreased number of oxytocin-immunoreactive neurons in the paraventricular nucleus of the hypothalamus in Parkinson’s disease. Neurology. 1994 Jan;44 (1):849.Google Scholar
42Wierda, M, Goudsmit, E, Van der Woude, PF, et al.Oxytocin cell number in the human paraventricular nucleus remains constant with aging and in Alzheimer’s disease. Neurobiol Aging. 1991 Sep-Oct;12(5):5116.Google Scholar
43Fliers, E, Swaab, DF, Pool, CW, Verwer, RW.The vasopressin and oxytocin neurons in the human supraoptic and paraventricular nucleus; changes with aging and in senile dementia. Brain Res. 1985 Sep 2;342(1): 4553.Google Scholar
44Kremer, HP, Bots, GT.Lewy bodies in the lateral hypothalamus: do they imply neuronal loss? Mov Disord. 1993 Jul;8(3):31520.Google Scholar