No CrossRef data available.
Published online by Cambridge University Press: 05 January 2022
Background: Human induced pluripotent stem cell-derived neural stem cells (hiPS-NSCs) are a promising therapeutic approach to regenerate after spinal cord injury (SCI) as they can differentiate to myelinating oligodendrocytes, synaptically-active neurons, and supportive astrocytes. Unfortunately, most chronically injured patients develop ex vacuo microcystic cavitations which prevent regenerative cell migration and neurite outgrowth. QL6 is a novel, pH-neutral, biomaterial which can self-assembles into a supportive extracellular matrix (ECM)-like matrix in vivo. This work assesses QL6’s ability to support hiPS-NSC-based regeneration. Methods:In Vitro:hiPS-NSCs were extensively characterized by EDTA assay, qPCR, and immunocytochemistry(ICC), electron microscopy(EM) and neurosphere formation assays. In Vivo:Immunodeficient rats received clinically-relevant chronic C6-7 injuries. Animals were randomized: (1)vehicle, (2)hiPS-NSCs, (3)QL6, (4)QL6+hiPS-NSCs. All rats underwent treadmill rehabilitation and behavioural testing. A subset underwent single-cell RNA sequencing(scRNAseq). Results: hiPS-NSCs proliferated robustly on QL6(Ki67+/DAPI+; 29%vs6%; p<0.01). EDTA assay showed hiPS-NSC binding to QL6 to be driven by calcium-independent mechanisms. Importantly, QL6 enhanced adherent neurosphere formation. EM-imaging provided the first images of the hiPS-NSC/QL6 interaction. Behavioural assessments demonstrate synergistic improvements with combinatorial treatment. High-throughput scRNAseq differential gene expression analyses suggest QL6 is altering lineage signalling in the human graft post-transplantation. Conclusions: This work provides key proof-of-concept data that QL6 can support translationally-relevant human iPS-NSCs in traumatic SCI.