Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T05:44:04.543Z Has data issue: false hasContentIssue false

Oxidative Stress after Subarachnoid Hemorrhage in gp91phox Knockout Mice

Published online by Cambridge University Press:  02 December 2014

Shimin Liu
Affiliation:
Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
Jiping Tang
Affiliation:
Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
Robert P Ostrowski
Affiliation:
Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
Elena Titova
Affiliation:
Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
Cara Monroe
Affiliation:
Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
Wanqiu Chen
Affiliation:
Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
Wendy Lo
Affiliation:
Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
Robert Martin
Affiliation:
Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
John H Zhang
Affiliation:
Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Oxidative stress largely contributes to early brain injury after subarachnoid hemorrhage (SAH). One of the major sources of reactive oxygen species is NADPH oxidase, upregulated after SAH. We hypothesized that NADPH oxidase-induced oxidative stress plays a major causative role in early brain injury after SAH.

Methods:

Using gp91phox knockout (ko) and wild-type (wt) mice, we studied early brain injury in the endovascular perforation model of SAH. Mortality rate, cerebral edema, oxidative stress, and superoxide production were measured at 24 h after SAH. Neurological evaluation was done at 23 h after SAH surgery.

Results:

Genotyping confirmed the existence of a nonfunctional gp91phox gene in the ko mice. CBF measurements did not show differences in SAH-induced acute ischemia between ko and wt mice. SAH caused a significant increase of water content in the ipsilateral hemisphere as well as an increase of Malondialdehyde (MDA) levels and superoxide production. There were no significant differences in post-SAH mortality rate, brain water content and the intensity of the oxidative stress between knockout and wild type groups of mice.

Conclusions:

Our results suggest that gp91phox is not critically important to the early brain injury after SAH. An adaptive compensatory mechanism for free radical production in knockout mice is discussed.

Résumé:

RÉSUMÉ:

Le stress oxydatif après une hémorragie sous-arachnoïenne chez les souris knock-out gp91-phox.

Contexte:

Le stress oxydatif contribue de façon importante aux lésions précoces dues à une hémorragie sous-arachnoïenne (HSA). La NADPH oxydase est une des sources majeures de dérivés réactifs de l'oxygène qui est régulée à la hausse après une HSA. Nous avons émis l'hypothèse que le stress oxydatif induit par la NADPH oxydase est une cause majeure de dommage cérébral après une HSA. Méthodes : Nous avons étudié les dommages cérébraux précoces chez le modèle de HSA par perforation endovasculaire chez des souris de phénotype sauvage (ps) et des souris knock-out (ko) gp91-phox. Le taux de mortalité, l'?dème cérébral, le stress oxydatif et la production de superoxyde ont été mesurés 24 heures après l'HSA. L'évaluation neurologique était faite 23 heures après la chirurgie. Résultats : Le génotypage a confirmé l'existence d'un gène gp91-phox non fonctionnel chez les souris ko. On n'a pas constaté de différence dans la mesure du débit sanguin cérébral entre les souris ps et les souris ko en phase d'ischémie aiguë induite par l'HSA. L'HSA a causé une augmentation significative du contenu aqueux dans l'hémisphère ipsilatéral ainsi qu'une augmentation des niveaux de malondialdéhyde et de la production de superoxyde. Il n'y avait pas de différences significatives entre les groupes de souris ps et ko quant au taux de mortalité, au contenu aqueux du cerveau et à l'intensité du stress oxydatif post HSA. Conclusions : Nos résultats indiquent que gp91-phox ne joue pas un rôle critique dans les dommages cérébraux précoces après une HSA. Nous discutons d'un mécanisme compensatoire d'adaptation pour la production de radicaux libres chez les souris ko.

Type
Experimental Neurosciences
Copyright
Copyright © The Canadian Journal of Neurological 2007

References

1. Broderick, JP, Brott, T, Tomsick, T, Huster, G, Miller, R. The risk of subarachnoid and intracerebral hemorrhages in blacks as compared with whites. N Engl J Med. 1992;326:7336.Google Scholar
2. Kassell, NF, Sasaki, T, Colohan, AR, Nazar, G. Cerebral vasospasm following aneurysmal subarachnoid hemorrhage. Stroke. 1985;16:56272.CrossRefGoogle ScholarPubMed
3. Broderick, JP, Brott, TG, Duldner, JE, Tomsick, T, Leach, A. Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage. Stroke. 1994;25:13427.Google Scholar
4. Kaptain, GJ, Lanzino, G, Kassell, NF. Subarachnoid haemorrhage: epidemiology, risk factors, and treatment options. Drugs Aging. 2000;17:18399.Google Scholar
5. Weir, B, Macdonald, RL, Stoodley, M. Etiology of cerebral vasospasm. Acta Neurochir Suppl. 1999;72:2746.Google Scholar
6. Bederson, JB, Germano, IM, Guarino, L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat. Stroke. 1995;26:108691.Google Scholar
7. Cahill, WJ, Calvert, JH, Zhang, JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2006;26:134153.CrossRefGoogle ScholarPubMed
8. Ostrowski, RP, Colohan, AR, Zhang, JH. Molecular mechanisms of early brain injury after subarachnoid hemorrhage. Neurol Res. 2006;28:399414.Google Scholar
9. Sehba, FA, Bederson, JB. Mechanisms of acute brain injury after subarachnoid hemorrhage. Neurol Res. 2006;28:38198.CrossRefGoogle ScholarPubMed
10. Kamii, H, Kato, I, Kinouchi, H, Chan, PH, Epstein, CJ, Akabane, A, et al. Amelioration of vasospasm after subarachnoid hemorrhage in transgenic mice overexpressing CuZn-superoxide dismutase. Stroke. 1999;30:86771.Google Scholar
11. Matz, PG, Copin, JC, Chan, PH. Cell death after exposure to subarachnoid hemolysate correlates inversely with expression of CuZn-superoxide dismutase. Stroke. 2000;31:24509.CrossRefGoogle ScholarPubMed
12. El-Benna, J, Dang, PM, Gougerot-Pocidalo, MA, Elbim, C. Phagocyte NADPH oxidase: a multicomponent enzyme essential for host defenses. Arch Immunol Ther Exp (Warsz). 2005;53:199206.Google ScholarPubMed
13. DeLeo, FR, Quinn, MT. Assembly of the phagocyte NADPH oxidase: molecular interaction of oxidase proteins. J Leukoc Biol. 1996;60:67791.Google Scholar
14. Segal, AW, Abo, A. The biochemical basis of the NADPH oxidase of phagocytes. Trends Biochem Sci. 1993;18:437.CrossRefGoogle ScholarPubMed
15. Decoursey, TE, Ligeti, E. Regulation and termination of NADPH oxidase activity. Cell Mol Life Sci. 2005;62:217393.Google Scholar
16. Serrano, F, Kolluri, NS, Wientjes, FB, Card, JP, Klann, E. NADPH oxidase immunoreactivity in the mouse brain. Brain Res. 2003;988:1938.Google Scholar
17. Kim, DE, Suh, YS, Lee, MS, Kim, KY, Lee, JH, Lee, HS, et al. Vascular NAD(P)H oxidase triggers delayed cerebral vasospasm after subarachnoid hemorrhage in rats. Stroke. 2002;33:268791.Google Scholar
18. Shin, HK, Lee, JH, Kim, KY, Kim, CD, Lee, WS, Rhim, BY, et al. Impairment of autoregulatory vasodilation by NAD(P)H oxidase-dependent superoxide generation during acute stage of subarachnoid hemorrhage in rat pial artery. J Cereb Blood Flow Metab. 2002;22:86977.Google Scholar
19. Walder, CE, Green, SP, Darbonne, WC, Mathias, J, Rae, J, Dinauer, MC, et al. Ischemic stroke injury is reduced in mice lacking a functional NADPH oxidase. Stroke. 1997;28:22528.Google Scholar
20. Ostrowski, RP, Tang, J, Zhang, JH. Hyperbaric oxygen suppresses NADPH oxidase in a rat subarachnoid hemorrhage model. Stroke. 2006;37:13148.Google Scholar
21. Tang, J, Liu, J, Zhou, C, Ostanin, D, Grisham, MB, Neil Granger, D, et al. Role of NADPH oxidase in the brain injury of intracerebral hemorrhage. J Neurochem. 2005;94:134250.CrossRefGoogle ScholarPubMed
22. Parra, A, McGirt, MJ, Sheng, H, Laskowitz, DT, Pearlstein, RD, Warner, DS. Mouse model of subarachnoid hemorrhage associated cerebral vasospasm: methodological analysis. Neurol Res. 2002;24:5106.CrossRefGoogle ScholarPubMed
23. Ostrowski, RP, Colohan, AR, Zhang, JH. Mechanisms of hyperbaric oxygen-induced neuroprotection in a rat model of subarachnoid hemorrhage. J Cereb Blood Flow Metab. 2005;25:55471.CrossRefGoogle Scholar
24. Kusaka, I, Kusaka, G, Zhou, C, Ishikawa, M, Nanda, A, Granger, DN, et al. Role of AT1 receptors and NAD(P)H oxidase in diabetesaggravated ischemic brain injury. Am J Physiol Heart Circ Physiol. 2004;286:H244251.Google Scholar
25. Pollock, JD, Williams, DA, Gifford, MA, Li, LL, Du, X, Fisherman, J, et al. Mouse model of X-linked chronic granulomatous disease, an inherited defect in phagocyte superoxide production. Nat Genet. 1995;9:209.Google Scholar
26. Chamseddine, AH, Miller, FJ Jr. Gp91 phox contributes to NADPH oxidase activity in aortic fibroblasts but not smooth muscle cells. Am J Physiol Heart Circ Physiol. 2003;285:H22849.CrossRefGoogle Scholar
27. Gao, HM, Liu, B, Hong, JS. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci. 2003;23:61817.CrossRefGoogle ScholarPubMed
28. Byrne, JA, Grieve, DJ, Bendall, JK, Li, JM, Gove, C, Lambeth, JD, et al. Contrasting roles of NADPH oxidase isoforms in pressureoverload versus angiotensin II-induced cardiac hypertrophy. Circ Res. 2003;93:8025.Google Scholar
29. Thyagarajan, T, Totey, S, Danton, MJ, Kulkarni, AB. Genetically altered mouse models: the good, the bad, and the ugly. Crit Rev Oral Biol Med. 2003;14:15474.CrossRefGoogle ScholarPubMed
30. Vallet, P, Charnay, Y, Steger, K, Ogier-Denis, E, Kovari, E, Herrmann, F, et al. Neuronal expression of the NADPH oxidase NOX4, and its regulation in mouse experimental brain ischemia. Neuroscience. 2005;132:2338.Google Scholar
31. Frantz, S, Brandes, RP, Hu, K, Rammelt, K, Wolf, J, Scheuermann, H, et al. Left ventricular remodeling after myocardial infarction in mice with targeted deletion of the NADPH oxidase subunit gp91PHOX. Basic Res Cardiol. 2006;101:12732.Google Scholar
32. Takeya, R, Taura, M, Yamasaki, T, Naito, S, Sumimoto, H. Expression and function of Noxo1 gamma, an alternative splicing form of the NADPH oxidase organizer 1. FEBS J. 2006;273:366377.CrossRefGoogle Scholar