Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-27T18:25:32.610Z Has data issue: false hasContentIssue false

Organization of Excitatory Inputs from the Cerebral Cortex to the Cerebellar Dentate Nucleus

Published online by Cambridge University Press:  18 September 2015

Shinoda Yoshikazu*
Affiliation:
Department of Physiology, School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
Sugiuchi Yuriko*
Affiliation:
Department of Physiology, School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
Futami Takahiro*
Affiliation:
Department of Physiology, School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
*
Department of Physiology, School of Medicine, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, Japan
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Intracellular recording was made from dentate nucleus neurons (DNNs) in anesthetized cats, to investigate cerebral inputs to DNNs and their responsible pathways. Stimulation of the medial portion of the contralateral pericruciate cortex most effectively produced EPSPs followed by long-lasting IPSPs in DNNs. Stimulation of the pontine nucleus (PN), the nucleus reticularis tegmenti pontis (NRTP) and the inferior olive (IO) produced monosynaptic EPSPs and polysynaptic IPSPs in DNNs. The results indicate that the excitatory input from the cerebral cortex to DNNs is at least partly relayed via the PN, the NRTP and the 10. Intraaxonal injection of HRP visualized the morphology of mossy fibers from the PN to the DN and the cerebellar cortex. The functional significance of the excitatory inputs from the PN and the NRTP to the DN is discussed in relation to the motor control mechanisms of the cerebellum.

Type
Abstract
Copyright
Copyright © Canadian Neurological Sciences Federation 1993

References

REFERENCES

1.Cajal S, Ramon y.Histologie du System Nerveux de l’Homme etes Vertébrés. Maloine, Paris, 1911.Google Scholar
2.Eccles, JC, Ito, M, Szentágothai, J.The Cerebellum as a Neuronal Machine. Berlin-Heidelberg-New York: Springer, 1967.Google Scholar
3.Ito, M, Yoshida, M.The origin of cerebellar-induced inhibition of Deiters neurons. I. Monosynaptic initiation of the inhibitory postsynaptic potentials. Exp Brain Res 1966; 2: 330349.CrossRefGoogle Scholar
4.Ito, M, Yoshida, M, Obata, K, et al. Inhibitory control of intracerebellar nuclei by the Purkinje cell axons. Exp Brain Res 1970; 10: 6480.CrossRefGoogle ScholarPubMed
5.Beitz, AJ.The topographical organization of the olivo-dentate and dentato-olivary pathways in the cat. Brain Res 1976; 115: 311317.CrossRefGoogle ScholarPubMed
6.Courville, J, Augustine, JR, Martel, P.Projections from the inferior olive to the cerebellar nuclei in the cat demonstrated by retrograde transport of horseradish peroxidase. Brain Res 1977; 130: 405419.CrossRefGoogle Scholar
7.Groenewegen, HJ, Voogd, J, Freedman, SL.The parasagittal zonal organization within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of cat cerebellum. J Comp Neurol 1979; 183: 551602.CrossRefGoogle Scholar
8.Matsushita, M, Ikeda, M.Olivary projections to the cerebellar nuclei in the cat. Exp Brain Res 1970; 10: 488500.Google Scholar
9.Eller, T., Chan-Palay, V.Afferents to the cerebellar lateral nucleus. Evidence from retrograde transport of horseradish peroxidase after pressure injections through micropipettes. J Comp Neurol 1976; 166: 285302.CrossRefGoogle Scholar
10.Oka, H, Yoshida, K, Yamamoto, T, et al. Organization of afferent connections to the lateral and interpositus cerebellar nuclei from the brainstem nuclei: a horseradish peroxidase study in the cat. Neurosci Res 1985; 2: 321333.CrossRefGoogle Scholar
11.Dietrichs, E, Bjaale, JG, Brodal, P.Do pontocerebellar fibers send collaterals to the cerebellar nuclei? Brain Res 1983; 259: 127131.CrossRefGoogle Scholar
12.Allen, Gl, Gilbert, PFC, Marini, R, et al. Integration of cerebral and peripheral inputs by interpositus neurons in monkey. Exp Brain Res 1977b; 27: 8199.CrossRefGoogle ScholarPubMed
13.Allen, GI, Gilbert, PFC, Yin, TCT.Convergence of cerebral inputs onto dentate neurons in monkey. Exp Brain Res 1978; 32: 151170.CrossRefGoogle ScholarPubMed
14.Shinoda, Y, Sugiuchi, Y, Futami, T.Excitatory inputs to cerebellar dentate nucleus neurons from the cerebral cortex in the cat. Exp Brain Res 1987; 67:299315.CrossRefGoogle ScholarPubMed
15.Brodal, A, Jansen, J.The ponto-cerebellar projection in the rabbit and cat. Experimental investigations. J Comp Neurol 1946; 84: 31118.CrossRefGoogle ScholarPubMed
16.Shinoda, Y, Sugiuchi, Y, Futami, T, et al. Axon collaterals of mossy fibers from the pontine nucleus in the cerebellar dentate nucleus. J Neurophysiol 1992; 67: 547560.CrossRefGoogle ScholarPubMed
17.Jansen, J, Brodal, A.Aspects of Cerebellar Anatomy. Oslo: J Chr Grundersen, 1954.Google Scholar
18.Voogd, J.The Cerebellum of the Cat. Structure and Fibre Connexions. Proefschr. N.V., Assen: Van Gorcum & Co. 1964.Google Scholar
19.Eccles, JC.The Physiology of Synapses. Berlin: Springer-Verlag, 1964.CrossRefGoogle Scholar
20.Hassler, WR, Muhs-Clement, K.Architektonischer Aufbau des sen-sori-motorishen und parietalen Cortex der Katze. J Hirnforsch 1964; 6: 377420.Google Scholar
21.Amatuni, A, Tarnecki, R, Wrobel, A, et al. Interaction on extracerebellar cortical inputs in dentate neurons of the cat. Acta Neurobiol Exp 1981: 41: 373390.Google ScholarPubMed
22.Armstrong, DM, Harvey, RJ.Responses in the inferior olive to stimulation of the cerebellar and cerebral cortices in the cat. J Physiol (Lond) 1966; 187: 553574.CrossRefGoogle ScholarPubMed
23.Van Der, Want J, Wiklund, L, Guegan, M.et al. Anterograde tracing of the rat olivocerebellar system with phaseolus vulgaris leuco-agglutinin (PHA-L). Demonstration of climbing fiber collateral innervation of the cerebellar nuclei. J Comp Neurol 1989: 288: 118.CrossRefGoogle Scholar
24.Brodal, A.Neurological Anatomy in Relation to Clinical Medicine. Oxford: Oxford University Press, 1981.Google Scholar
25.Brodal, P.The corticopontine projection in the cat. I. Demonstration of a somatotopically organized projection from the primary sensorimotor cortex. Exp Brain Res 1968a; 5: 212237.CrossRefGoogle ScholarPubMed
26.Brodal, P.The corticopontine projection in the cat. II. Demonstration of a somatotopically organized projection from the second somatosensory cortex. Arch Ital Biol 1968b; 106: 310332.Google Scholar
27.Mizuno, N, Mochizuki, K., Akimoto, C, et al. Projections from the parietal cortex to the brain stem nuclei in the cat, with special reference to the parietal cerebrocerebellar system. J Comp Neurol 1973; 147: 511522.CrossRefGoogle Scholar
27.Kusama, T, Otani, K, Kawana, E.Projections of the motor, somatic sensory, auditory and visual cortices in cats. In: Tokizane, T, Schade’, JP, eds. Progress in Brain Research, 21, part A. Amsterdam: Elsevier 1966; 292322.CrossRefGoogle ScholarPubMed
29.Brodal, A, Brodal, P.The organization of the nucleus reticularis tegmenti pontis in the cat in the light of experimental anatomical studies of its cerebral cortical afferents. Exp Brain Res 1971; 13: 90110.CrossRefGoogle ScholarPubMed
30.Rüegg, DG, Wiesendanger, M.Corticofugal effects from sensorimotor area I and somatosensory area II on neurones of the pontine nuclei in the cat. J Physiol (Lond) 1975; 247: 745757.CrossRefGoogle ScholarPubMed
31.Allen, GI, Korn, H, Oshima, T, et al. The mode of synaptic linkage in the cerebro-ponto-cerebellar pathway of the cat. II. Responses of single cells in the pontine nuclei. Exp Brain Res 1975: 24: 1536.Google ScholarPubMed
32.Allen, GI, Oshima, T, Toyama, K.The mode of synaptic linkage in the cerebro-ponto-cerebellar pathway investigated with intracellular recording from the pontine nuclei cells of the cat. Exp Brain Res 1977a; 29: 123136.CrossRefGoogle ScholarPubMed
33.Oka, H, Sasaki, K, Matsuda, Y, et al.Responses of pontocerebellar neurones to stimulation of the parietal association and the frontal motor cortices. Brain Res 1975; 93: 399407.CrossRefGoogle ScholarPubMed
34.Futami, T, Kano, M, Sento, S, et al.Synaptic organization of the cerebello-thalamo-cerebral pathway in the cat. III. Cerebellar input to corticofugal neurons destined for different subcortical nuclei in areas 4 and 6. Neuroscience Res 1986: 3: 321344.CrossRefGoogle ScholarPubMed
35.Walberg, F.Descending connections to the inferior olive. J Comp Neurol 1956; 104:77173.CrossRefGoogle Scholar
36.Bishop, GA, McCrea, RA, Kitai, ST.A horseradish peroxidase study of the cortico-olivary projection in the cat. Brain Res 1976: 116: 306311.CrossRefGoogle ScholarPubMed
37.Sousa-Pinto, A, Brodal, A.Demonstration of a somatotopical pattern in the cortico-olivary projection in the cat. An experimental-anatomical study. Exp Brain Res 1969; 8: 364386.CrossRefGoogle ScholarPubMed
38.Sousa-Pinto, A.Experimental anatomical demonstration of a cortico-olivary projection from area 6 (supplementary motor area?) in the cat. Brain Res 1969; 16: 7383.CrossRefGoogle ScholarPubMed
39.Saint-Cry, JA, Courville, J.Projections from the motor cortex, mid-brain, and vestibular nuclei to the inferior olive in the cat: anatomical organization and functional correlates. In: Courville, J, de Montigny, C, Lamarre, Y, eds. The Inferior Olivary Nucleus. New York: Raven Press 1980; 97124.Google Scholar
40.Oka, H, Jinnai, K, Yamamoto, T.The parieto-rubro-olivary pathway in the cat. Exp Brain Res 1979; 37: 115125.CrossRefGoogle ScholarPubMed
41.Mano, N, Yamamoto, K.Simple-spike activity of cerebellar Purkinje cells related to visually guided wrist tracking movement in the monkey. J Neurophysiol 1980; 43: 713728.CrossRefGoogle ScholarPubMed
42.Schieber, MH, Thach, WT.Trained slow tracking. II. Bidirectional discharge patterns of cerebellar nuclear, motor cortex, and spindle afferent neurons. J Neurophysiol 1985; 54; 12281270.CrossRefGoogle ScholarPubMed
43.Thach, WT.Discharge of Purkinje and cerebellar neurons during rapidly alternating arm movement in the monkey. J Neurophysiol 1968; 31: 785797.CrossRefGoogle ScholarPubMed
44.Wetts, R, Kalaska, JF, Smith, AM.Cerebellar nuclear cell activity during antagonist cocontraction and reciprocal inhibition of forearm muscles. J Neurophysiol 1985; 54: 231244.CrossRefGoogle ScholarPubMed
45.Allen, GI, Tsukahara, N.Cerebrocerebellar communication systems. Physiol Rev 1974; 54: 9571006.CrossRefGoogle ScholarPubMed
46.Chan-Palay, V.Cerebellar Dentate Nucleus, Organization, Cytology, and Transmitters. Heidelberg: Springer, 1977.CrossRefGoogle Scholar
47.Ito, M.The Cerebellum and Neural Control. New York: Raven Press, 1984.Google Scholar
48.Brodal, P., Dietrichs, E, Walberg, F.Do pontocerebellar mossy fibers give off collaterals to the cerebellar nuclei? An experimental study in the cat with implantation of crystalline HRP-WGA. Neurosci Res 1986; 4: 1224.CrossRefGoogle Scholar
49.Gerrits, NM, Voogd, J.The projection of the nucleus reticularis tegmenti pontis and adjacent regions of the pontine nuclei to the central cerebellar nuclei in the cat. J Comp Neurol 1987; 258: 5269.CrossRefGoogle Scholar
50.Jahnsen, H.Electrophysiological characteristics of neurones in the guinea-pig deep cerebellar nuclei in vitro. J Physiol (Lond) 1986 372: 129147.CrossRefGoogle ScholarPubMed
51.Llinás, R, Mühlethaler, M.Electrophysiology of guinea-pig cerebellar nuclear cells in the vitro brain stem-cerebellar preparation. J Physiol (Lond) 1988; 404: 241258.CrossRefGoogle ScholarPubMed