Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T02:38:59.385Z Has data issue: false hasContentIssue false

Neurotransmitters in the Basal Ganglia

Published online by Cambridge University Press:  18 September 2015

William A. Staines
Affiliation:
Kinsmen Laboratory of Neurological Research, Department of Psychiatry, University of British Columbia, Vancouver, B.C.
Patrick L. McGeer
Affiliation:
Kinsmen Laboratory of Neurological Research, Department of Psychiatry, University of British Columbia, Vancouver, B.C.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The literature is reviewed on the afferents and efferents of the caudate/putamen, globus pallidus and substantia nigra, and on the neurotransmitters occurring in the various tracts. Emphasis is placed upon the diverse roles played by GABA and glutamate as transmitters in motor pathways and upon the probability that the substantia nigra pars reticulata plays a pivotal role in the output of the basal ganglia. Excessive stimulation of the projection from the pedunculopontine tegmental area to the substantia nigra is shown to cause destruction of dopaminergic neurons in the latter nucleus, suggesting another possible mechanism for cell death in Parkinson’s disease.

Type
1. Neurotransmitters and the Pharmacology of the Basal Ganglia
Copyright
Copyright © Canadian Neurological Sciences Federation 1984

References

Anderson, ME, Yoshida, M (1980) Axonal branching patterns and location of nigrothalamic and nigrocollicular neurons in the cat. J. Neurophysiol. 43: 883895.CrossRefGoogle ScholarPubMed
Andrews, CD, Woodruff, GN (1982) Turning behaviour following nigral injections of dopamine agonists and glycine. Eur. J. Pharmacol. 84: 169175.CrossRefGoogle ScholarPubMed
Araki, M, McGeer, PL, McGeer, EG (1984a) Presumptive GABAergic pathways from the midbrain to the superior colliculus studied by a combined HRP-GABA transaminase pharmacohistochemical method. Neuroscience, in press.CrossRefGoogle Scholar
Araki, M, McGeer, PL, McGeer, EG (1984b) Retrograde HRP tracing combined with a pharmacohistochemical method for GABA transaminase for the identification of presumptive GABAergic projections to the habenula. Brain Res., in press.CrossRefGoogle Scholar
Arbuthnott, GW, Walker, RH, Whale, D, Wright, AK (1982a) Further evidence for a pallidostriatal pathway in rat brain. Physiol. Soc. Abst. p. 33.Google Scholar
Arbuthnott, GW, Wright, AK, Hamilton, MH, Brown, JR (1982b) Orthograde transport of Nuclear yellow: a problem and its solution. J. Neurosci. Methods 6: 365368.Google ScholarPubMed
Aronin, N, Cooper, PE, Lorenz, LJ, Bird, ED, Sagar, SM, Leeman, SE, Martin, JB (1983) Somatostatin is increased in the basal ganglia in Huntington Disease. Ann. Neurol. 13: 519526.CrossRefGoogle ScholarPubMed
Barbin, G, Garbarg, M, Lorens-Cortes, C., Palacios, CM, Pollard, H, Schwartz, JC (1977) Biochemical mapping of histaminergic pathways and cell bodies in brain. Intl. Soc. Neurochem. Abstracts, 6: 443.Google Scholar
Beach, TG, McGeer, EG (1984) The distribution of Substance P in the primate basal ganglia: an immunohistochemical study of baboon and human brain. Neuroscience, in press.CrossRefGoogle Scholar
Beal, MF, Martin, JB (1983) Effects of lesions on somatostatin-like immunoreactivity in the rat striatum. Brain Res. 266: 6773.CrossRefGoogle ScholarPubMed
Beckstead, RM (1979) Convergent prefrontal and nigral projections to the striatum of the rat. Neurosci. Lett. 12: 5964.CrossRefGoogle Scholar
Beckstead, RM (1983) A reciprocal axonal connection between the subthalamic nucleus and the neostriatum in the cat. Brain Res. 275: 137142.CrossRefGoogle ScholarPubMed
Beckstead, RM, Frankfurter, A (1982) The distribution and some morphological features of substantia nigra neurons that project to the thalamus, superior colliculus and pedunculopontine nucleus in the monkey. Neuroscience 7: 23772388.CrossRefGoogle Scholar
Beitz, AJ (1982) The sites of origin of brain stem neurotensin and serotonin projections to the rodent nucleus raphe magnus. J. Neurosci. 7: 829842.CrossRefGoogle Scholar
Bentivoglio, M, Van der Kooy, D, Kuypers, HGJM (1979) The organization of the efferent projections of the substantia nigra in the rat. A retrograde fluorescent double labelling study. Brain Res. 174: 117.CrossRefGoogle Scholar
Bolam, JP, Powell, JF, Totterdell, S, Smith, AD (1981) The proportion of neurons in the rat neostriatum that project to the substantia nigra demonstrated using horseradish peroxidase conjugated with wheat germ agglutinin. Brain Res. 220: 339343.CrossRefGoogle Scholar
Brann, MR, Emson, PC (1980) Microiontophoretic injection offluorescent tracer combined with simultaneous immunofluorescent histochemistry for the demonstration of efferents from the caudate putamen projecting to the globus pallidus. Neurosci. Lett. 16: 6166.CrossRefGoogle Scholar
Brown, LL, Makman, MH, Wolfson, LI, Dvorkin, B, Warner, C, Katzman, R (1979) A direct role of dopamine in the rat subthalamic nucleus and adjacent intrapeduncular area. Science 206: 14161418.CrossRefGoogle ScholarPubMed
Brownstein, MJ, Mroz, EH, Tappaz, NL, Leeman, SE (1977) On the origin of substance Pand glutamic acid decarboxylase (GAD) in the substantia nigra. Brain Res. 135: 315323.CrossRefGoogle Scholar
Buchwald, NA, Fisher, RS, Levine, MS, Gazarra, R, Hull, CD (1981) Connectivity of the caudate nucleus in newborn kittens and adult cats. Soc. Neurosci. Abstr. 7: 192.Google Scholar
Carter, DA, Fibiger, HC (1978) The projections of the entopeduncular nucleus and globus pallidus in rat as demonstrated by autoradiography and horseradish peroxidase histochemistry. J. Comp. Neurol. 177: 113124.CrossRefGoogle ScholarPubMed
Chang, HT, Wilson, CJ, Kitai, ST (1981) Single neostriatal efferent axons in the globus pallidus: a light and electron microscopic study. Science 2:915917.CrossRefGoogle Scholar
Chesselet, MF, Reisine, TC, Glowinski, J, Graybiel, AM (1982) Striatal somatostatin: immunohistochemistry and effects on dopaminergic transmission. Soc. Neurosci. Absts. 8: 287.Google Scholar
Chevalier, G, Deniau, JM, Thierry, AM, Feger, J (1981a) The nigrotectal pathway. An electrophysiological reinvestigation in the rat. Brain. Res. 213: 253263.CrossRefGoogle ScholarPubMed
Chevalier, G, Thierry, AM, Shibazaki, T, Feger, J (1981b) Evidence for a GABAergic inhibitory nigrotectal pathway in the rat. Neurosci. Lett. 21:6770.CrossRefGoogle ScholarPubMed
Childs, JA, Gale, K (1983) Neurochemical evidence for a nigrotegmental GABAergic projection. Brain Res. 258: 109114.CrossRefGoogle ScholarPubMed
Chung, YW, Hassler, R (1982) Anterograde and retrograde degenerative reactions in caudate nucleus and putamen after experimental lesion of the pallidum in squirrel monkey (Saimiri ciureas). Acta Anat. 13: 246263.CrossRefGoogle Scholar
Clavier, RM, Atmadja, S, Fibiger, HC (1976) Nigrothalamic projections in the rat as demonstrated by orthograde and retrograde tracing techniques. Brain Res. Bull. 1: 379384.CrossRefGoogle Scholar
Collingridge, GL, Davies, J (1981) The influence of striatal stimulation and putative neurotransmitters on identified neurons in the rat substantia nigra. Brain Res. 212: 345359.CrossRefGoogle ScholarPubMed
Connor, JD (1975) Electrophysiology of the nigra-caudate dopamine pathway. Pharmac. Therap. B. 1: 357370.Google ScholarPubMed
Contestabile, A, Fonnum, F (1983) Cholinergic and GABAergic forebrain projections to the habenula and nucleus interpeduncularis: surgical and kainic acid lesions. Brain Res. 275: 287297.CrossRefGoogle Scholar
Davies, P, Josef, J, Thompson, A (1981) Anterior to posterior variations in the concentration of somatostatin-like immunoreactivity in human basal ganglia. Brain Res. Bull. 7: 365368.CrossRefGoogle ScholarPubMed
De Bellefeuille, L, Parent, A (1982) Fluorescent retrograde study of the pallidointralaminarand pallidonigral pathways in primate. Neurosci. Abst. 8: 169.Google Scholar
Del Fiacco, M, Paxinos, G, Cuello, AC (1982) Neostriatal enkephalin-immunoreactive neurons project to the globus pallidus. Brain Res. 231: 117.CrossRefGoogle ScholarPubMed
Deniau, JM, Hammond, C., Chevalier, G, Feyer, J (1978a) Evidence for branched subthalamic nucleus projections to substantia nigra, entopeduncular nucleus and globus pallidus. Neurosci. Lett. 9: 117121.CrossRefGoogle ScholarPubMed
Deniau, JM, Hammond, C., Riszk, A, Feyer, J (1978b) Electrophysiological properties of identified output neurons of the substantia nigra (pars compacta and pars reticulata): evidence for the existence of branched neurons. Exp. Brain Res. 32: 409422.CrossRefGoogle ScholarPubMed
de Quidt, ME, Emson, PE (1983) Neurotensin facilitates dopamine release in vitro from rat striatal slices. Brain Res. 274: 376380.CrossRefGoogle ScholarPubMed
DiFiglia, M, Aronin, N (1982) Ultrastructural features of immunoreactive somatostatin neurons in the rat caudate nucleus. J. Neurosci. 2: 12671274.CrossRefGoogle ScholarPubMed
DiFiglia, M, Pasik, T, Pasik, P (1978) A Golgi study of afferent fiber in the neostriatum of monkeys. Brain Res. 152: 341347.CrossRefGoogle ScholarPubMed
Donoghue, JP, Kitai, ST (1981) A collateral pathway to the neostriatum from corticofugal neuron of the rat sensory motor cortex. An intracellular HRP study. J. Comp. Neurol. 201: 113.CrossRefGoogle Scholar
Dray, A (1979) The striatum and substantia nigra: A commentary on their relationship. Neuroscience 4: 14071439.CrossRefGoogle Scholar
Edstrom, JP, Phillis, JW (1980) A cholinergic projection from the globus pallidus to the cerebral cortex. Brain Res. 189: 524529.CrossRefGoogle Scholar
Emson, PD, Fahrenkrug, J, Spokes, EGS (1979) Vasoactive intestinal peptide (VIP): distribution in normal human brain and in Huntington’s disease. Brain Res. 173: 174178.CrossRefGoogle ScholarPubMed
Emson, PC, Rehfeld, JHF, Langevin, H, Rossor, M (1980) Reduction in choleocystokinin-like immunoreactivity in the basal ganglia in Huntington’s disease. Brain Res. 198: 496500.CrossRefGoogle ScholarPubMed
Emson, PC, Goedert, M, Horsfield, P, Rioux, F, St. Pierre, S (1982) The regional distribution and chromatographic characterization of neurotensin-immunoreactivity in the rat central nervous system. J. Neurochem. 38: 992999.CrossRefGoogle Scholar
Fallon, JH, Ziegler, BTS (1979) The crossed cortico-caudate projection in the rhesus monkey. Neurosci. Lett. 15: 2932.CrossRefGoogle ScholarPubMed
Fibiger, HC, Pudritz, RE, McGeer, PL, McGeer, EG (1972) Axonal transport in nigro-striatal and nigro-thalamic neurons; effects of medial forebrain bundle lesions and 6-hydroxydopamine. J. Neurochem. 19: 16971708.CrossRefGoogle ScholarPubMed
Finley, JCW, Grossman, GH, Dimeo, P, Petrusz, P (1978) Somatostatin containing neurons in the rat brain: widestread distribution revealed by immunocytochemistry after pretreatment with pronase. Amer. J. Anat. 153: 483488.CrossRefGoogle ScholarPubMed
Gerfen, CR, Staines, WA, Arbuthnot, GW, Fibiger, HC (1982) Crossed connections of the substantia nigra in the rat. J. Comp. Neurol. 207: 283303.CrossRefGoogle ScholarPubMed
Goedert, M, Emson, PC (1983) The regional distribution of neurotensin-like immuoreactivity in central and peripheral tissues of the cat. Brain Res. 272: 291297.CrossRefGoogle Scholar
Goedert, M, Manthy, PW, Hunt, SP, Emson, PC (1983) Mosaic distribution of neurotensin-like immunoreactivity in the cat striatum. Brain Res. 274: 176179.CrossRefGoogle ScholarPubMed
Goodman, RR, Huhar, MJ, Hester, L, Snyder, SH (1983) Adenosine receptors: autoradiographic evidence for their location on axon terminals of excitatory neurons. Science 220: 967–8.CrossRefGoogle ScholarPubMed
Graybiel, AM, Ragsdale, CW Jr, Yoneoka, ES, Elde, RP (1981) An immuno-histochemical study on enkephalins and other neuropeptides in the striatum of the cat with evidence that the opiate peptides are arranged to form mosaic patterns in register with the striosomal compartments visible by acetylcholinesterase staining. Neuroscience 6: 377397.CrossRefGoogle Scholar
Grofova, I, Fonnum, F (1982) Extrinsic and intrinsic origin of GAD in pars compacta of the rat substantia nigra. Soc. Neurosci. Abst. 8: 961.Google Scholar
Haber, S, Elde, R (1981) Correlation between met-enkephalin and substance P immunoreactivity in the primate globus pallidus. Neuroscience 6: 12911297.CrossRefGoogle ScholarPubMed
Hattori, T, Fibiger, HC, McGeer, PL (1975) Demonstration of a pallidonigral projection innervating dopaminergic neurons. J. Comp. Neurol. 162: 487504.CrossRefGoogle ScholarPubMed
Hattori, T, Singh, VK, McGeer, EG, McGeer, PL (1976) Immunohistochemical localization of choline acetyltransferase-containing neostriatal neurons and their relationship with dopaminergic synapses. Brain Res. 102: 164173.CrossRefGoogle ScholarPubMed
Hattori, T, McGeer, EG, McGeer, PL (1979) Fine structural analysis of the cortico-striatal pathway. J. Comp. Neurol. 185: 347353.CrossRefGoogle ScholarPubMed
Hedreen, J (1977) Corticostriatal cells identified by the peroxidase method. Neurosci. Lett. 4: 17.CrossRefGoogle ScholarPubMed
Hedreen, J (1978) Nondopaminergic and dopaminergic nigrostriatal pathways in rats. Soc. Neurosci. Absts. 4: 45.Google Scholar
Herkenham, M (1979) The afferent and efferent connections of the ventromedial thalamic nucleus in the rat. J. Comp. Neurol. 183: 487518.CrossRefGoogle ScholarPubMed
Jackson, A, Crossman, AR (1981a) Subthalamic projection to nucleus tegmenti pedunculopontinus in the rat. Neurosci. Lett. 22: 1722.CrossRefGoogle ScholarPubMed
Jackson, A, Crossman, AR (1981b) Basal ganglia and other afferent projections to the peribrachial region in the rat. A study using retrograde and anterograde transport of horseradish peroxidase. Neuroscience 6: 15371549.CrossRefGoogle Scholar
Jayaraman, A (1983) Topographic organization and morphology of peripallidal and pallidal cells projecting to the striatum in cats. Brain Res. 275: 279286.CrossRefGoogle Scholar
Jennes, L, Stumpf, WE, Kalivas, PW (1982) Neurotensin: topographical distribution in rat brain by immunohistochemistry. J. Comp. Neurol. 210:211224.CrossRefGoogle ScholarPubMed
Jessel, TM, Emson, PC, Paxinos, G, Cuello, AC (1978) Topographic projections of substance P and GABA pathways in the striato- and pallidonigral system: abiochemical and immunohistochemical study. Brain Res. 152: 487498.CrossRefGoogle Scholar
Jones, EG, Leavitt, RY (1975) Retrograde axonal transport and the demonstration of nonspecific projections to the cerebral cortex and striatum from thalamic intralaminar nuclei in the rat, cat and monkey. J. Comp. Neurol. 154: 349378.CrossRefGoogle Scholar
Kelley, AE, Domestick, VB, Nauta, WJH (1982) The amygdalostriatal projection in the rat – an anatomical study by anterograde and retrograde tracing methods. Neuroscience 7: 615630.CrossRefGoogle ScholarPubMed
Kelly, PH, Moore, KE (1980) Decrease of cortical choline acetyltransferase after lesion of the globus pallidus in the rat. Exp. Neurol. 61: 479484.CrossRefGoogle Scholar
Kim, R, Nakano, K, Hayaramon, A, Carpenter, MB (1976) Projections of the globus pallidus and adjacent structures: An autoradiographic study in the monkey. J. Comp. Neurol. 169: 263290.CrossRefGoogle ScholarPubMed
Kimura, H, McGeer, PL, Peng, JH, McGeer, EG (1981) The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat. J. Comp. Neurol. 200: 151201.CrossRefGoogle ScholarPubMed
Kimura, H, Peng, JH, McGeer, PL (in press). Choline acetyltransferse containing neurons in rat brain. In: Bjorklund, A. and Hokfelt, T. (eds.), Handbook of Chemical Neuroanatomy, Elsevier Press, The Netherlands.Google Scholar
Larsen, KD, McBride, RL (1979) The organization of feline entopeduncular nucleus projections. Anatomical Studies. J. Comp. Neurol. 184: 293308.CrossRefGoogle ScholarPubMed
Leichnetz, GR (1981) The median subcallosal fasciculus in the monkey: A unique prefrontal corticostriate and corticocortical pathway revealed by anterogradely transported horseradish peroxidase. Neurosci. Lett. 21: 137142.CrossRefGoogle ScholarPubMed
Loughlin, SE, Fallon, JH (1982) Mesostriatal projections from ventral tegmentum and dorsal raphe cells project ipsilaterally or contralaterally but not bilaterally. Neurosci. Lett. 32: 1116.CrossRefGoogle Scholar
McGeer, EG, McGeer, PL, Vincent, SR (1982) GABA enzymes and pathways. In: Bradford, H.F. (ed), Neurotransmitter Interaction and Compartmentation, Nato Advanced Study Institutes Series A, Vol. 48, Plenum Press, New York and London pp. 299327.Google Scholar
McGeer, PL, McGeer, EG (1981) Amino acid neurotransmitters. In: Siegel, G.J., Albers, R.W., Agranoff, B.W. and Katzman, R. (eds.), Basic Neurochemistry, Little, Brown and Co., Boston pp. 233254.Google Scholar
McGeer, PL, McGeer, EG, Scherer, U, Singh, K (1977) A glutamatergic corticostriatal path? Brain Res. 128: 369373.CrossRefGoogle ScholarPubMed
McGeer, PL, Kimura, H, McGeer, EG, Peng, JH (1982) Cholinergic systems in the CNS. In: Bradford, H.F. (ed), Neurotransmitter Interaction and Compartmentation, Nato Advanced Study Institutes Series A, Vol. 48, Plenum Press, New York and London pp. 253289.Google Scholar
McGeer, PL, McGeer, EG, Nagai, T (1983) GABAergic and cholinergic indices in various regions of rat brain after intracerebral injections of folic acid. Brain Res. 260: 107116.CrossRefGoogle ScholarPubMed
Manberg, PJ, Youngblood, WW, Nemeroff, CB, Rossor, MN, Iversen, LL, Prange, AJ Jr, Kizer, JS (1982) Regional distribution of neurotension in human brain. J. Neurochem. 38: 17771780.CrossRefGoogle Scholar
Mannisto, P, Mattila, J, Kaakkola, S (1981) Possible involvement of nigrostriatal dopamine system in the inhibition of thyrotropin secretion in the rat. Eur. J. Pharmacol. 76: 403409.CrossRefGoogle ScholarPubMed
Marshall, PE, Burd, GD, Landis, DMD (1982) Somatostatin in the neostriatum and substantia nigra in normal human brain and in Huntington’s disease. Soc. Neurosci. Abst. 8: 507.Google Scholar
Mauborgne, A, Javoy-Agid, F, Legrand, JC, Agid, Y, Cesselin, F (1983) Decrease of substance P-like immunoreactivity in the substantia nigra and pallidum of parkinsonian brains. Brain Res. 268: 167170.CrossRefGoogle ScholarPubMed
Matsuzaki, T, Shiosaka, S, Inagaki, S, Sakanaka, M, Takatsuki, K, Takagi, H, Senba, E, Kawai, Y, Tohyama, M (1981) Distribution of neuropeptides in the dorsal pontine tegmental area of the rat. Cell. & Mol. Biol. 27: 499508.Google ScholarPubMed
Meibach, RC, Katzman, R (1981) Origin, course and termination of dopaminergic substantia nigra neurons projecting to the amygdaloid complex in the cat. Neuroscience 6: 21592171.CrossRefGoogle Scholar
Meyer, DK, Beinfeld, MC, Oertel, WH, Brownstein, MJ (1982) Origin of the choleocystokinin-containing fibers in the caudatoputamen. Science 215: 187–8.CrossRefGoogle ScholarPubMed
Moon-Edley, , Graybiel, A, (1980) Connections of the nucleus tegmenti pedunculopontinus pars compacta TPc in cat. Anat. Rec. 195:128a.Google Scholar
Motamedi, F, York, DH (1980) Effects of a nigral descending pathway on cervical spinal cord afferent fibers and interneurons. Exp. Neurol. 68: 258268.CrossRefGoogle ScholarPubMed
Nagai, T, McGeer, PL, McGeer, EG (1983) Distribution of GABA-T-intensive neurons in the rat forebrain and midbrain. J. Comp. Neurol. 218: 220238.CrossRefGoogle ScholarPubMed
Nakano, K, Kohno, M, Kawahira, J, Tokushige, A (1982) Entopeduncular nucleus projections to the contralateral thalamic nuclei: an HRP study. Brain Res. 262: 283287.CrossRefGoogle Scholar
Nauta, HJW (1979a) Projections of the pallidal complex: An autoradiographic study in the cat. Neuroscience 4: 18531873.CrossRefGoogle ScholarPubMed
Nauta, HJW (1979b) A proposed conceptual reorganization of the basal ganglia and telencephalon. Neuroscience 4: 18751881.CrossRefGoogle ScholarPubMed
Nauta, HJW, Cole, M (1978) Efferent projections of the subthalamic nucleus: An autoradiographic study in the monkey and cat. J. Comp. Neurol. 180: 116.CrossRefGoogle ScholarPubMed
Nemeroff, CB, Youngblood, WW, Manberg, PJ, Prange, AJ Jr., Kizer, JS (1983) Regional brain concentrations of neuropeptides in Huntington’s chorea and schizophrenia. Science 221: 972974.CrossRefGoogle ScholarPubMed
Niijima, K, Yoshida, M (1982) Electrophysiological evidence for branching nigral projections to pontine reticular formation, superior colliculus and thalamus. Brain Res. 239: 279282.CrossRefGoogle ScholarPubMed
Nilaver, G, Hoffman, DL, Zimmerman, EA (1979) Multiple projections of the magnocellular hypothalamus to other brain regions including cerebral cortex. Trans. Am. Neurol. Assoc. 104: 205208.Google ScholarPubMed
Oka, (1980) Organization of the cortico-caudate projections. A horseradish peroxidase study in the cat. Exp. Brain Res. 40: 203208.CrossRefGoogle ScholarPubMed
Palacios, JM, Kuhar, MJ (1981) Neurotensin receptors are located on dopamine-containing neurons in rat midbrain. Nature 294: 587589.CrossRefGoogle ScholarPubMed
Papadopoulos, G, Huston, JP (1980) Removal of the telencephalon spares tuning induced by injection of GABA agonists and antagonists into the substantia nigra. Behav. Brain Res. 1: 2538.CrossRefGoogle Scholar
Park, MR, Falls, WM, Kitai, ST (1982) An intracellular HRP study of the rat globus pallidus. 1. Responses and light microscopic analysis. J. Comp. Neurol. 211: 284294.CrossRefGoogle ScholarPubMed
Pinnock, RD, Dray, A (1982) Differential sensitivity of presumed dopaminergic and non-dopaminergic neurons in rat substantia nigra to electrophoretically applied substance P. Neurosci. Lett. 29: 153158.CrossRefGoogle ScholarPubMed
Pollard, H, Lores-Cortes, C, Barbin, G, Garbarg, M, Schwartz, JC (1978) Histamine and histidine decarboxylase in brain stem nuclei: distribution and decrease after lesions. Brain Res. 157: 178181.CrossRefGoogle ScholarPubMed
Porceddu, ML, Imperato, A, Melis, MR, Di Chiara, G (1983) Role of ventral mesencephalic reticularformation and related noradrenergic and serotonergic bundles in turning behaviour as investigated by means of kainate, 6-hydroxydopamine and 5, 7-dihydroxytryptamine lesions. Brain Res. 261: 187200.CrossRefGoogle Scholar
Ribak, CE, Kramer, WG (1982) Cholinergic neurons in the basal forebrain of the cat have direct projections to the sensorimotor cortex. Exp. Neurol. 75: 453465.CrossRefGoogle Scholar
Ricardo, JA (1980) Efferent connections of the subthalamic region in the rat. I. the subthalamic nucleus of Luys. Brain Res. 202: 257271.CrossRefGoogle ScholarPubMed
Ricciardi, G, Forchetti, C, Gasbarri, A, Scarnati, E, Pacitti, C (1981) Proprieta a ‘neuroeccitatorie dell’acido kainico. Il) Danni neuronali susseguenti a microiniezioni intracerebrali in ratti, Boll. Soc. Ital. Biol. Sper. 57: 919925.Google Scholar
Rossor, MN, Hunt, SP, Iversen, LL, Bannister, R, Hawthorn, J, Ang, VTY, Jenkins, JS (1982) Extrahypothalamic vaspressin is unchanged in Parkinson’s disease and Huntington’s disease. Brain Res. 253: 341343.CrossRefGoogle Scholar
Royce, GJ (1978) Cells of origin of subcortical afferents to the caudate nucleus: A horseradish peroxidase study in the cat. Brain Res. 153: 465475.CrossRefGoogle Scholar
Royce, GJ (1982) Laminar origin of cortical neurons which project upon the caudate nucleus: A horseradish peroxidase investigation in the cat. J. Comp. Neurol. 205: 829.CrossRefGoogle ScholarPubMed
Rouzaire-Dubois, B, Scarnati, E, Hammond, C, Crossman, AR, Shibazaki, T (1983) Microiontophoretic studies on the nature of the neurotransmitter in the subthalamo-entopeduncular pathway of the rat. Brain Res. 271: 1120.CrossRefGoogle ScholarPubMed
Sakanaka, M, Shiosaka, S, Takatsuki, K, Tohyama, M (1983) Evidence for the existence of a substance P-containing pathway from the nucleus laterodorsalis tegmenti (Castaldi) to the medial frontal cortex of the rat. Brain Res. 259: 123126.CrossRefGoogle Scholar
Saper, CB, Loewy, AD (1982) Projections of the pedunculopontine tegmental nucleus in the rat: evidence for additional extrapyramidal circuitry. Brain Res. 252: 367372.CrossRefGoogle ScholarPubMed
Scarnati, E, Campara, E, Pacitti, C (1983) The functional role of the nucleus accumbens in the control of the substantia nigra: Electrophysiological investigations in intact and striatum-globus pallidus lesioned rats. Brain Res. 265: 249257.CrossRefGoogle ScholarPubMed
Scatton, B, Worms, P, Lloyd, KG, Bartholini, G (1982) Cortical modulation of striatal function. Brain Res. 232: 331343.CrossRefGoogle ScholarPubMed
Smith, AD, Bolam, JP, Somogyi, (1981) An approach to the identification of neurotransmitters in characterized synapses of complex neuronal networks: application to the basal ganglia of the rat. In: Chemical Neurotransmission 75 years, Stjarne, L., Hedqvist, P., Lagercrantz, H. and Wennmalm, A. (Eds.), Academic Press, New York pp. 463479.Google ScholarPubMed
Sofroniew, MV (1980) Projections from vasopressin, oxytocin, and neurophysin neurons to neural targets in the rat and human. J. Histochem. Cytochem. 28: 475478.CrossRefGoogle ScholarPubMed
Somogyi, P, Priestley, JV, Cuello, AC, Smith, AD, Takagi, H (1982) Synaptic connections of enkephalin-immunoreactive nerve terminals in the neostriatum: a correlated light and electron microscopic study. J. Neurocytol. II: 779807.CrossRefGoogle Scholar
Spindel, ER, Wurtman, RJ, Bird, ED (1980) Increased TRH content of the basal ganglia in Huntington’s disease. N. Engl. J. Med. 303: 12351236.Google ScholarPubMed
Spindel, ER, Pettibone, DJ, Wurtman, RHJ (1981) Thyrotropin-releasing hormone (TRH) content of rat striatum: modification by drugs and lesions. Brain Res. 216: 323331.CrossRefGoogle ScholarPubMed
Staines, WA, Nagy, JI, Vincent, SR, Fibiger, HC (1980) Neurotransmitters contained in the efferents of the striatum. Brain Res. 194: 391402.CrossRefGoogle ScholarPubMed
Staines, WA, Atmadja, S, Fibiger, HC (1981) Demonstration of a pallidostriatal pathway by retrograde transport of HRP-labelled lectin. Brain Res. 206: 446450.CrossRefGoogle Scholar
Starr, MS, Kilpatrick, IC (1981) Distribution of GAB A in the rat thalamus; specific decrease in thalamic GABA following lesion or electrical stimulation of the substantia nigra. Neuroscience 6: 10951104.CrossRefGoogle ScholarPubMed
Studler, JM, Javoy-Agid, F, Cesselin, F, Legrand, JC, Agid, Y (1982) CCK-8-Immunoreactivity distribution in human brain: selective decrease in the substantia nigra of parkinsonian patients. Brain Res. 243: 176179.CrossRefGoogle ScholarPubMed
Sugimoto, T, Hattori, T (1983) Confirmation of thalamosubthalamic projections by electron microscopic autoradiography. Brain Res. 267: 335339.CrossRefGoogle ScholarPubMed
Sugimoto, TO, Mizuno, N, Itoh, K (1981) An autoradiographic study on the terminal distribution of cerebellothalamic fibers in the cat. Brain Res. 215: 2947.CrossRefGoogle Scholar
Sundquist, J, Forsling, ML, Olsson, JE, Akerlund, M (1983) Cerebrospinal fluid arginine vasopressin in degenerative disorders and other neurological diseases. J. Neurol. Neurosurg. Psychiatry 46: 1417.CrossRefGoogle ScholarPubMed
Takatsuki, K, Shinosaka, S, Sakanaka, M, Inagaki, S, Semba, E, Takagi, H, Tohyama, M (1981) Somatostatin in the auditory system of the rat. Brain Res. 213: 211216.CrossRefGoogle ScholarPubMed
Tohyama, MK, Satoh, K, Sakumoto, T, Kimoto, Y, Takahashi, Y, Yamamoto, K, Itakura, T (1978) Organization and projections of the neurons in the dorsal tegmental area of the rat. J. Hirnforsch. 19: 165176.Google ScholarPubMed
Tulloch, IF, Arbuthnott, GW, Wright, AK (1978) Topographical organization of the striatonigral pathway revealed by anterograde and retrograde neuroanatomical tracing techniques. J. Anat. 127: 425441.Google ScholarPubMed
Ueki, A (1983) The mode of nigro-thalamic transmission investigated with intracellular recording in the cat. Exp. Br. Res. 49: 116124.CrossRefGoogle ScholarPubMed
Uhl, GR, Goodman, RR, Snyder, SH (1979) Neurotensin-containing cell bodies, fibers and nerve terminals in the brain stem of the rat: immunohistochemical mapping. Brain Res. 1667: 7791.CrossRefGoogle Scholar
Uhl, GR, Snyder, SH (1976) Regional and subcellular distributions of brain neurotensin. Life Sci. 19: 18271832.CrossRefGoogle ScholarPubMed
van der Kooy, D (1979) The organization of the thalamic, nigral and raphe cells projecting to the medial vs. lateral caudate putamen in rat. A fluorescent retrograde double labelling study. Brain Res. 169: 382387.CrossRefGoogle Scholar
van der Kooy, D, Carter, D (1981) The organization of the efferent projections and striatal afferents of the entopeduncular and adjacent areas in the rat. Brain Res. 211: 1536.CrossRefGoogle ScholarPubMed
van der Kooy, D, Hattori, T (1980) Single subthalamic nucleus neurons project to both the globus pallidus and substantia nigra in rat. J. Comp. Neurol. 192:751768.CrossRefGoogle ScholarPubMed
van der Kooy, D, Coscina, DV, Hattori, T (1981) Is there a non-dopaminergic nigrostriatal pathway? Neuroscience 6: 345357.CrossRefGoogle Scholar
Veening, GJ, Cornelissen, FM, Lieven, PAJM (1980) The topical organization of the efferents to the caudatoputamen of the rat. A horseradish peroxidase study. Neuroscience 5: 12531268.CrossRefGoogle Scholar
Vincent, SR, Hokfelt, T, Christensson, I, Terenius, L (1982a) Dynorphin-immunoreactive neurons in the central nervous system of the rat. Neurosci. Lett. 33: 185190.CrossRefGoogle ScholarPubMed
Vincent, SR, Hokfelt, T, Christensson, I, Terenius, L (1928b) Immuno-histochemical evidence for a dynorphin immunoreacti ve striatonigral pathway. Eur. J. Pharmacol. 85: 251252.CrossRefGoogle Scholar
Vincent, SR, Skirboll, L, Hokfelt, T, Johansson, O, Lundberg, JM, Elde, RP, Terenius, L, Kimmel, J (1982c) Coexistence of somatostatin and avian pancreatic polypeptide (APP)-like immunoreactivity in some forebrain neurons. Neuroscience 7: 439446.CrossRefGoogle ScholarPubMed
Vincent, SR, Staines, WA, Fibiger, HC (1983a) Histochemical demonstration of separate populations of somatostatin and cholinergic neurons in the rat striatum. Neurosci. Lett. 325: 111114.CrossRefGoogle Scholar
Vincent, SR, Hokfelt, T, Skirboll, L, Wu, J.-Y (1983b) Hypothalamic γ-aminobutyric acid neurons project to the neocortex. Science 220: 13091310.CrossRefGoogle Scholar
Walker, JE (1983) Glutamate, GABA, and CNS disease: A review. Neurochem. Res. 8: 521550.CrossRefGoogle ScholarPubMed
Wojcik, WJ, Neff, NH (1983) Adenosine Al receptors are associated with cerebellar granule cells. J. Neurochem. 41: 759763.CrossRefGoogle Scholar
Wilson, CJ, Phelan, KD (1982) Dual topographic representation of neostriatum in the globus pallidus of the rat. Brain Res. 243: 354359.CrossRefGoogle Scholar
Yang, HYT, Panula, P, Tang, J, Costa, E (1983) Characterization and localization of Met5-enkephalin-Arg6-Phe7 stored in various rat brain regions. J. Neurochem. 40: 969976.CrossRefGoogle Scholar
Yeterian, EH, van Hoesen, GW (1978) Corticostriate projection in the monkey: The organization of certain corticostriate connections. Brain Res. 139: 4363.CrossRefGoogle Scholar