No CrossRef data available.
Identification of resting state networks using independent component analysis in patients with brain tumors
Published online by Cambridge University Press: 03 June 2015
Background: Resting state functional MRI (rs-fMRI) provides many advantages to task-based fMRI in neurosurgical populations, foremost of which is the lack of the need to perform a task. Many networks can be identified by rs-fMRI in a single period of scanning. Despite the advantages, there is a paucity of literature on rs-fMRI in neurosurgical populations. Methods: Eight patients with tumours near areas traditionally considered as eloquent cortex participated in a five minute rs-fMRI scan. Resting-state fMRI data underwent Independent Component Analysis (ICA) using the Multivariate Exploratory Linear Optimized Decomposition into Independent Components (MELODIC) toolbox in FSL. Resting state networks (RSNs) were identified on a visual basis. Results: Several RSNs, including language (N=7), sensorimotor (N=7), visual (N=7), default mode network (N=8) and frontoparietal attentional control (n=7) networks were readily identifiable using ICA of rs-fMRI data. Conclusion: These pilot data suggest that ICA applied to rs-fMRI data can be used to identify motor and language networks in patients with brain tumours. We have also shown that RSNs associated with cognitive functioning, including the default mode network and the frontoparietal attentional control network can be identified in individual subjects with brain tumours. While preliminary, this suggests that rs-fMRI may be used pre-operatively to localize areas of cortex important for higher order cognitive functioning.