Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-22T01:32:19.107Z Has data issue: false hasContentIssue false

Neuromagnetic Somatosensory Responses to Natural Moving Tactile Stimulation

Published online by Cambridge University Press:  02 December 2014

Yung-Yang Lin
Affiliation:
Integrated Brain Research Unit, Department of Medical Research and Education, and Neurology, Neurological Institute, Taipei Veterans General Hospital; National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Unit, Low Temperature Laboratory, Helsinki University of Technology, Espoo, Finland
Matti Kajola
Affiliation:
Integrated Brain Research Unit, Department of Medical Research and Education, and Neurology, Neurological Institute, Taipei Veterans General Hospital; National Yang-Ming University School of Medicine, Taipei, Taiwan; Brain Research Unit, Low Temperature Laboratory, Helsinki University of Technology, Espoo, Finland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

To explore the somatosensory cortical responses to natural moving tactile stimulation in adult subjects using magnetoencephalography.

Methods:

We measured cortical somatosensory magnetic evoked fields (SEFs) to moving tactile stimuli by a brush over the right thumb once every 1.5 s in seven subjects. Electric SEFs with various intensity or simulated jitter were used for comparison.

Results:

Tactile SEFs in primary somatosensory cortex (SI) consisted of two deflections: N24mT and P55mT. Electric SEFs consisted of N24mE, P30mE, P40mE, and P55mE. The amplitude of N24mT was only 34% ± 12% of N24mE, whereas P55mT and P55mE were of about the same size. With increased jitter or decreased intensity, attenuation of electric SEFs was more clearly found in early deflection than late deflection.

Conclusions:

Natural moving tactile stimulation produced simpler cortical somatosensory waveforms in comparison with electric SEFs, partly related to less sharp intensity and stimulation jitter with moving tactile stimulation. We propose that of all the afferent fibers conveying the early deflection, the low threshold components participate the generation of the late deflection.

Résumé:

RÉSUMÉ: Objectif:

Explorer les potentiels corticaux somesthésiques à la stimulation tactile mobile naturelle chez des adultes au moyen de la magnétoencéphalographie.

Méthodes:

Nous avons mesuré les champs évoqués magnétiques somesthésiques corticaux (SEFs) à la stimulation tactile mobile du pouce droit à toutes les 1.5 secondes chez sept sujets. Les SEFs électriques d’intensité variable ou les secousses simulées ont été utilisés pour fins de comparaison.

Résultats:

Les SEFs tactiles dans le cortex somesthésique primaire comportaient deux déflexions: N24mT et P55mT. Les SEFs électriques étaient N24mE, P30mE, P40mE et P55mE. L’amplitude de N24mT était de seulement 34% ± 12% de celle de N24mE, alors que P55mT et P55mE étaient à peu près de la même dimension. Avec l’augmentation des secousses ou la diminution de l’intensité, l’atténuation des SEFs électriques était plus évidente dans la déflexion précoce que dans la déflexion tardive.

Conclusions:

La stimulation tactile mobile naturelle a produit des ondes somesthésiques corticales plus simples que les SEFs électriques, en partie parce que la stimulation tactile mobile produit une stimulation moins aiguë. Nous proposons que, de toutes les fibres afférentes transmettant la déflexion précoce, les composantes à seuil bas participent à la génération de la déflexion tardive.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 2003

References

1. Kaukoranta, E, Hamalainen, M, Sarvas, J, Hari, R. Mixed and sensory nerve stimulations activate different cytoarchitectonic areas in the human primary somatosensory cortex SI. Neuromagnetic recordings and statistical considerations. Exp Brain Res 1986; 63: 6066.CrossRefGoogle ScholarPubMed
2. Pons, TP, Garraghty, PE, Cusick, CG, Kaas, JH. The somatotopic organization of area 2 in macaque monkeys. J Comp Neurol 1985; 241: 445466.Google Scholar
3. Allison, T, McCarthy, G, Wood, CC, et al. Human cortical potentials evoked by stimulation of the median nerve. I. Cytoarchitectonic areas generating short-latency activity. J Neurophysiol 1989; 62: 694710.CrossRefGoogle ScholarPubMed
4. Huttunen, J. Magnetic cortical responses evoked by tactile stimulation of the middle finger in man. Pflügers Arch 1986; 407: 129133.CrossRefGoogle ScholarPubMed
5. Kaas, JH. The organization of somatosensory cortex in primates and other mammals. In: Euler, C von, Franzen, O, Lindblom, O, Ottoson, D, (Eds). Somatosensory Mechanisms. London: Macmillan Press; 1984: 5159.Google Scholar
6. Kaas, JH, Nelson, RJ, Sur, M, Lin, CS, Merzenich, MM. Multiple representations of the body within the primary somatosensory cortex of primates. Science 1979; 204: 521523.CrossRefGoogle ScholarPubMed
7. Powell, TPS, Mountcastle, VB. Some aspects of the functional organization of the postcentral gyrus of the monkey: a correlation of findings obtained in a single unit analysis with cytoarchitecture. Bull Johns Hopkins Hosp 1959; 105: 133162.Google Scholar
8. Wood, CC, Cohen, D, Cuffin, BN, Yarita, M, Allison, T. Electric sources in the human somatosensory cortex: identification by combined magnetic and potential field recordings. Science 1985; 227: 10511053.Google Scholar
9. Hari, R, Jousmäki, V, Vanni, S. Kohti inhimillisempää aivotutkimusta: PAH. Duodecim 1996; 112: 22102214.Google Scholar
10. Hämäläinen, M, Hari, R, Ilmoniemi, RJ, Knuutila, J, Lounasmaa, OV. Magnetoencephalography - theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phy 1993; 65: 413497.Google Scholar
11. Hari, R, Forss, N. Magnetoencephalography in the study of human somatosensory cortical processing. Philos Trans R Soc Lond B Biol Sci 1999; 354: 11451154.Google Scholar
12. Gardner, EP, Hämäläinen, HA, Warren, S, Davis, J, Young, W. Somatosensory evoked potentials (SEPs) and cortical single unit responses elicited by mechanical tactile stimuli in awake monkeys. Electroencephalogr Clin Neurophysiol 1984; 58: 537552.Google Scholar
13. Forss, N, Salmelin, R, Hari, R. Comparison of somatosensory evoked fields to airpuff and electric stimuli. Electroencephalogr Clin Neurophysiol 1994; 92: 510517.CrossRefGoogle ScholarPubMed
14. Phillips, CG, Powell, TP, Wiesendanger, M. Projection from low-threshold muscle afferents of hand and forearm to area 3a of baboon’s cortex. J Physiol 1971; 217: 419446.Google Scholar
15. Hashimoto, I, Yoshikawa, K, Sasaki, M. Exp Brain Res 1988; 73: 459469.Google Scholar
16. Jousmaki, V, Forss, N. Effects of stimulus intensity on signals from human somatosensory cortices. Neuroreport 1998; 9: 34273431.Google Scholar
17. Tsuji, S, Shibasaki, H, Kato, M, Kuroiwa, Y, Shima, F. Subcortical, thalamic and cortical somatosensory evoked potentials to median nerve stimulation. Electroencephalogr Clin Neurophysiol 1984; 59: 465476.CrossRefGoogle ScholarPubMed
18. Franzén, O, Offenloch, K. Evoked response correlates of psychophysical magnitude estimates for tactile stimulation in man. Exp Brain Res 1969; 8: 118.Google Scholar
19. Nakanishi, T, Takita, K, Toyokura, Y. Somatosensory evoked responses to tactile tap in man. Electroencephalogr Clin Neurophysiol 1973; 34: 16.Google Scholar
20. Jones, SJ, Power, CN. Scalp topography of human somatosensory evoked potentials: the effect of interfering tactile stimulation applied to the hand. Electroencephalogr Clin Neurophysiol 1984; 58: 2536.CrossRefGoogle ScholarPubMed
21. Huttunen, J. Effects of stimulus intensity on frontal, central and parietal somatosensory evoked potentials after median nerve stimulation. Electromyogr Clin Neurophysiol 1995; 35: 217223.Google Scholar
22. Gardner, EP, Costanzo, RM. Temporal integration of multiple-point stimuli in primary somatosensory cortical receptive fields of alert monkeys. J Neurophysiol 1980; 43: 444468.Google Scholar
23. Desmedt, JE, Huy, NT, Bourguet, M. The cognitive P40, N60 and P100 components of somatosensory evoked potentials and the earliest electrical signs of sensory processing in man. Electroencephalogr Clin Neurophysiol 1983; 56: 272282.CrossRefGoogle ScholarPubMed
24. Hashimoto, I. Somatosensory evoked potentials elicited by air-puff stimuli generated by a new high-speed air control system. Electroencephalogr Clin Neurophysiol 1987; 67: 231237.Google Scholar
25. Lin, YY, Simoes, C, Forss, N, Hari, R. Differential effects of muscle contraction from various body parts on neuromagnetic somatosensory responses. Neuroimage 2000; 11: 334340.Google Scholar
26. Schieppati, M, Ducati, A. Short latency cortical potentials evoked by tactile air-jet stimulation of body and face in man. Electroencephalogr Clin Neurophysiol 1984; 58: 418425.Google Scholar
27. Hari, R, Reinikainen, K, Kaukoranta, E, et al. Somatosensory evoked cerebral magnetic fields from SI and SII in man. Electroencephalogr Clin Neurophysiol 1984; 57: 254263.CrossRefGoogle ScholarPubMed
28. Okada, Y, Tanenbaum, R, Williamson, S, Kaufman, L. Somatotopic organization of the human somatosensory cortex as revealed by magnetic measurements. Exp Brain Res 1984; 56: 197205.CrossRefGoogle Scholar
29. Matsumiya, Y, Mostofsky, DI. Somatosensory evoked responses elicited by corneal and nostril air puff stimulation. Electroencephalogr Clin Neurophysiol 1972; 33: 225227.Google Scholar
30. Jousmäki, V, Hari, R. Somatosensory evoked fields to large-area vibrotactile stimuli. Clin Neurophysiol 1999; 110: 905909.Google Scholar
31. Sears, TA. Action potentials evoked in digital nerves by stimulation of mechanoreceptors in the human finger. J Physiol (Lond.) 1959; 148: 3031.Google Scholar