Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-27T14:34:10.252Z Has data issue: false hasContentIssue false

Myotonic Dystrophy: An Electrophysiological Study of Cognitive Deficits

Published online by Cambridge University Press:  18 September 2015

Aldo Ragazzoni
Affiliation:
Department of Neurological and Psychiatric Sciences, University of Florence, Florence, Italy
Francesco Pinto*
Affiliation:
Department of Neurological and Psychiatric Sciences, University of Florence, Florence, Italy
Rosanna Taiuti
Affiliation:
Department of Neurological and Psychiatric Sciences, University of Florence, Florence, Italy
Maria Caterina Silveri
Affiliation:
he Institute of Neurology, Catholic University, Rome, Italy
*
Dipartimento di Scienze Neurologiche e Psichiatrich, Universita' di Firenze, Viale Morgagni, 85 50126 Firenze, Italy
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Patients with Myotonic Dystrophy (MyD) frequently suffer from a dysfunction of the primary sensory pathways, as documented by abnormalities of short-latency evoked potentials. Impairment of intellectual functions has been less extensively investigated. Short-latency brainstem auditory evoked potentials (BAEPs) as well as long-latency auditory event-related potentials (ERPs) were recorded from 5 female and 6 male patients affected by MyD. A simple discrimination (“oddball”) paradigm was used to record ERPs to tones from Fz, Cz, Pz. Both BAEPs and ERPs were significantly altered as compared to normals. BAEP abnormalities were detected in 9 patients and ERP components N2 and P3 were delayed or absent for all patients, who nonetheless correctly discriminated between tones. These data indicate that CNS dysfunction in MyD involves not only primary sensory systems but also neural mechanisms underlying cognitive events and ERP generation.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1991

References

REFERENCES

1.Steinert, H. Myopatologische Beitraege. I. Dtsch. Z. Nervenheilk. 37:58104, 1909.CrossRefGoogle Scholar
2.Refsum, S, Lonnum, A, Sjaastad, O, et al. Dystrophia myotonica. Repeated pneumoencephalographic studies in ten patients. Neurology, 1957; 17:345348.CrossRefGoogle Scholar
3.Culebras, A, Feldman, RG, Merk, FB. Cytoplasmatic inclusion bodies within neurons of the thalamus in myotonic dystrophy. J. Neurol. Sci., 1973; 19:319329.CrossRefGoogle Scholar
4.Wisniewski, HM, Berry, K, Spiro, AJ, et al. Ultrastructure of thalamic neuronal inclusions in myotonic dystrophy. J. Neurol. Sci., 1975;24:321329.CrossRefGoogle ScholarPubMed
5.Rosman, NP, Kakulas, BA. Mental deficiency associated with muscular dystrophy: a neuropathological study. Brain 1966; 89: 769787.CrossRefGoogle ScholarPubMed
6.Glantz, RH, Wright, RB, Huckman, MS, et al. Central nervous system magnetic resonance imaging findings in myotonic dystrophy. Arch. Neurol. 1988; 45: 3637.CrossRefGoogle ScholarPubMed
7.Huber, SJ, Kissel, JT, Shuttleworth, EC, et al. Magnetic resonance imaging and clinical correlations of intellectual impairment in myotonic dystrophy. Arch. Neurol., 1989; 46: 536650.CrossRefGoogle ScholarPubMed
8.Friedlander, WJ, Bittenbender, JB. EEG findings in myotonic dystrophy. Electroenceph. Clin. Neurophysiol., 1964; 17: 564566.CrossRefGoogle Scholar
9.Barwick, DD, Osselton, JW, Walton, JN. EEG studies in hereditary myopathy. J. Neurol. Neurosurg. Psychiatry, 1965; 28: 109114.CrossRefGoogle ScholarPubMed
10.Lundervold, A, Refsum, S, Jacobsen, W. The EEG in dystrophia myotonica. Eur. Neurol., 1969; 2:279284.CrossRefGoogle ScholarPubMed
11.Beijersbergen, RSHM, Kemp, A, Storm van Leeuwen, W. EEG observation in dystrophia myotonica. Electroenceph. Clin. Neurophysiol., 1980; 49: 143151.CrossRefGoogle ScholarPubMed
12.Coccagna, G, Mantovani, L, Parchi, C, et al. Alveolar hypoventilation and hypersomnia in myotonic dystrophy. J. Neurol. Neurosurg. Psychiatry, 1975; 38: 977984.CrossRefGoogle ScholarPubMed
13.Broughton, R, Stuss, D, Kates, M, et al. Neuropsychological deficits and sleep in Myotonic Dystrophy. Can. J. Neurol. Sci., 1990; 17: 410415.CrossRefGoogle ScholarPubMed
14.Kirkham, TH, Coupland, SG. Myotonic Dystrophy: normal electroretinal function associated with visual evoked potential abnormalities. In: Huber, MA, Klein, D, eds. Neurogenetics and Neuroopthalmology. Amsterdam: Elsevier, 1981: 5158.Google Scholar
15.Gott, PS, Karnaze, DS, Keane, R. Abnormal visual evoked potentials in myotonic dystrophy. Neurology, 1983; 33: 16221625.CrossRefGoogle ScholarPubMed
16.Thompson, DS, Woodward, JB, Ringel, SP, et al. Evoked potential abnormalities in myotonic dystrophy. Electroenceph. Clin. Neurophysiol., 1983; 56: 453456.CrossRefGoogle ScholarPubMed
17.Bartel, PR, Lotz, BP, Van der Meyden, CH. Short-latency somatosensory evoked potentials in dystrophia myotonica. J. Neurol. Neurosurg. Psychiatry, 1984; 47: 524529.CrossRefGoogle ScholarPubMed
18.Bartel, PR, Lotz, BP, Robinson, E, et al. Posterior tibial and sural nerve somatosensory evoked potentials in dystrophia myotonica. J. Neurol. Sci., 1985; 70: 5565.CrossRefGoogle ScholarPubMed
19.Gott, PS, Karnaze, DS. Short-latency somatosensory evoked potentials in myotonic dystrophy. Electroenceph. Clin. Neurophysiol., 1985; 65: 455458.CrossRefGoogle Scholar
20.Sandrini, G, Gelmi, C, Rossi, V, et al. Electroretinographic and visual evoked potential abnormalities in myotonic dystrophy. Electroenceph. Clin. Neurophysiol., 1986; 64: 215217.CrossRefGoogle ScholarPubMed
21.Ganes, T, Kerty, E. Multimodal evoked potentials, EEG and electroretinography in patients with dystrophia myotonica. Acta Neurol. Scand., 1988; 78: 436442.CrossRefGoogle ScholarPubMed
22.Sartucci, F, Marconi, F, Busso, E, et al. Multimodality evoked potentials in myotonic dystrophy. Ital. J. Neurol Sci., 1989; 10: 6167.CrossRefGoogle ScholarPubMed
23.Pinto, F, Amantini, A, De Scisciolo, G, et al. Electrophysiological studies of the visual system in myotonic dystrophy. Acta Neurol. Scand., 1987;76:351358.CrossRefGoogle ScholarPubMed
24.Zellweger, H, Ionanescu, V. Myotonic dystrophy and its differential diagnosis. Acta Neurol. Scand., 1973; Suppl. 55, 49: 128.CrossRefGoogle Scholar
25.Woodward, J, Heaton, RK, Simon, D, et al. Neuropsychological findings in myotonic dystrophy. J. Clin. Neuropsychol., 1982; 4: 335342.CrossRefGoogle ScholarPubMed
26.Bird, T, Follett, C, Griep, E. Cognitive and personality function in myotonic muscular dystrophy. J. Neurol. Neurosurg. Psychiatry, 1983;46:971980.CrossRefGoogle ScholarPubMed
27.Malloy, P, Mishra, SK, Adler, SH. Neuropsychological deficits in myotonic muscular dystrophy. J. Neurol. Neurosurg. Psychiatry, 1990; 53: 10111013.CrossRefGoogle ScholarPubMed
28.Picton, TW, Hillyard, SA. Endogenous event-related potentials. In: Picton, TW, ed. Human Event-Related Potentials. Handbook of Electroencephalography and Clinical Neurophysiology, vol. 3. Revised Series. Amsterdam: Elsevier, 1988: 361426.Google Scholar
29.Hillyard, SA, Kutas, M. Electrophysiology of cognitive processing. Ann. Rev. Psychol., 1983; 34: 3361.CrossRefGoogle ScholarPubMed
30.Goodin, DS, Squires, KC, Starr, A. Long latency event-related components of the auditory evoked potentials in dementia. Brain, 1978; 101:635648.CrossRefGoogle ScholarPubMed
31.Pfefferbaum, A, Wenegrat, BG, Ford, JM, et al. Clinical applications of the P3 component of event-related potentials. Electroenceph. Clin. Neurophysiol., 1984; 59: 104124.CrossRefGoogle Scholar
32.Goodin, DS, Aminoff, JA. Electrophysiological differences between subtypes of dementia. Brain, 1986; 109: 11031113.CrossRefGoogle ScholarPubMed
33.Porjesz, B, Begleiter, H, Bihari, B, et al. The N2 component of the event-related brain potential in abstinent alcoholics. Electroenceph. Clin. Neurophysiol. 1987; 66: 121131.CrossRefGoogle ScholarPubMed
34.Neshige, R, Barrett, G, Shibasaki, H. Auditory long-latency eventrelated potentials in Alzheimer’s disease and multi-infarct dementia. J. Neurol. Neurosurg. Psychiatry, 1988; 51: 11201125.CrossRefGoogle ScholarPubMed
35.Newton, MR, Barrett, G, Callanan, MM, et al. Cognitive event-related potentials in multiple sclerosis. Brain, 1989; 112: 16371660.CrossRefGoogle ScholarPubMed
36.Hanafusa, H, Motomura, N, Asaba, H, et al. Event-related potentials (P300) in myotonic dystrophy. Acta Neurol. Scand., 1989; 80: 111113.CrossRefGoogle ScholarPubMed
37.Picton, TW. Auditory evoked potentials. In: Daly, DD, Pedley, TA, eds. Current Practice of Clinical Electroencephalography. New York: Raven Press, 1990: 625678.Google Scholar
38.Chiappa, KH. Brainstem auditory evoked potentials: interpretation. In: Chiappa, KH, ed. Evoked Potentials in Clinical Medicine. New York: Raven Press, 1990: 232237.Google Scholar
39.Naatanen, R, Picton, T. The N1 wave of the human electric and magnetic response to sound: a review and an analysis of the component structure. Psychophysiology, 1987; 24: 375425.CrossRefGoogle Scholar
40.Wood, CC, McCarthy, G. A possible frontal lobe contribution to scalp P3. Soc. Neurosci. Abstr., 1985; 11: 879.Google Scholar
41.Knight, RT, Scabini, D, Woods, DL, et al. Contribution of temporoparietal junction to the human auditory P3. Brain Res., 1989; 502: 109116.CrossRefGoogle Scholar
42.Smith, ME, Halgren, E, Sokolik, M, et al. The intracranial topography of the P3 event-related potential elicited during auditory oddball. Electroenceph. Clin. Neurophysiol., 1990; 76: 235248.CrossRefGoogle ScholarPubMed
43.Halgren, E, Stapleton, JM, Smith, M, et al. Generators of the human scalp P3(s). In: Cracco, RQ, Bodis-Wollner, I, eds. Evoked Potentials. Frontiers in Clinical Neurosciences, vol. 3. New York: Alan Liss, 1986: 269284.Google Scholar
44.Yingling, CD, Hosobuchi, Y. A subcortical correlate of P3 in man. Electroenceph. Clin. Neurophysiol., 1984; 59: 7276.CrossRefGoogle Scholar
45.Olson, ND, Jou, MF, Quast, JE, et al. Peripheral neuropathy in myotonic dystrophy. Arch. Neurol., 1978; 35: 741745.CrossRefGoogle ScholarPubMed
46.Naatanen, R, Picton, TW. N2 and automated versus controlled processes. In: McCallum, WC, Zappoli, R, Denoth, F, eds. Cerebral Psychophysiology: Studies in Event-Related Potentials. Amsterdam: Elsevier, 1986: 169186.Google Scholar
47.Magliero, A, Bashofe, TR, Coles, MGH, et al. On the dependence of P300 latency on stimulus evaluation processes. Psychophysiology, 1984; 21: 171186.CrossRefGoogle ScholarPubMed
48.Donchin, E. Surprise!…Surprise? Psychophysiology, 1981; 18:493513.CrossRefGoogle ScholarPubMed
49.Pratt, H, Michalewski, HJ, Barrett, G, et al. Brain potentials in a memory-scanning task. I. Modality and task effects on potentials to the probe. Electroenceph. Clin. Neurophysiol., 1989; 72: 407421.CrossRefGoogle Scholar
50.Wickens, C, Kramer, A, Vanasse, L, et al. Performance on concurrent tasks: a psychophysiological analysis of reciprocity of information-processing resources. Science, 1983; 221: 10801082.CrossRefGoogle ScholarPubMed
51.Gevins, A, Cutillo, BA. Signals of cognition. In: Lopes da Silva, FH, Storm van Leeuwen, W, Remond, A, eds. Clinical Applications of Computer Analysis of EEG and Other Neurophysiological Signals. Handbook of Electroencephalography and Clinical Neurophysiology, vol. 2. Revised series. Amsterdam: Elsevier, 1985:335381.Google Scholar