Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-23T20:18:23.731Z Has data issue: false hasContentIssue false

Multiple Sclerosis: Autoimmune Disease or Autoimmune Reaction?

Published online by Cambridge University Press:  02 December 2014

Peter K. Stys*
Affiliation:
Department of Clinical Neurosciences, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada.
*
Department of Clinical Neurosciences, HRIC 1AA22, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada. E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Multiple sclerosis (MS) is traditionally considered an autoimmune inflammatory demyelinating disease of the central nervous system (CNS) with much knowledge available to support this view. However, this characterization implies that the primary event is an aberrant immune response directed at CNS antigens, promoting inflammation and later driving progressive axo-glial degeneration. Trials with potent anti-inflammatory agents and detailed neuropathological studies raise questions about this sequence of events. This hypothetical paper argues that MS may be primarily a “cytodegenerative” disease, possibly first involving the oligodendrocyte/myelin unit. Liberation of autoantigens secondarily recruits an immune response, the force of which heavily depends on the host's immune predisposition. Thus, the spectrum of MS from highly aggressive Marburg type, to primary progressive disease with little inflammatory burden, is governed by a “convolution” between the underlying cytodegeneration and the host's immune predilection. Clinical heterogeneity may be a reflection of a variable immune response, whereas in reality, the “real MS” may be a homogeneous degenerative process analogous to well known primary neurodegenerative diseases.

Résumé:

RÉSUMÉ:

La sclérose en plaques (SP) est considérée traditionnellement comme une maladie démyélinisante inflammatoire auto–immune du système nerveux central (SNC), une notion bien étayée par de vastes connaissances. Cependant, cette interprétation implique que l'événement primaire est une réponse immunitaire aberrante dirigée contre des antigènes du SNC, qui favorise l'inflammation et subséquemment la dégénérescence axo–gliale progressive. Des essais au moyen d'agents anti–inflammatoires puissants et des études neuropathologiques détaillées soulèvent des questions au sujet de cette succession d'événements. Dans cet article, nous émettons l'hypothèse que la SP puisse être principalement une maladie “cytodégénérative”, impliquant possiblement au départ l'unité oligodendrocyte/myéline. La libération d'auto–antigènes recruterait secondairement une réponse immunitaire dont la force dépendrait principalement de la prédisposition immunitaire de l'hôte. Ainsi, le spectre de la SP, de la forme très agressive de Marburg à la forme progressive primaire dont le fardeau inflammatoire est minime, serait régi par une “convolution” entre la cytodégénérescence sous–jacente et la prédisposition immunitaire de l'hôte. L'hétérogénéité clinique pourrait être le reflet d'une réponse immunitaire variable, alors qu'en réalité, la “vraie SP” pourrait être un processus dégénératif homogène analogue à celui des maladies neurodégénératives primaires bien connues.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 2010

References

1. Bhat, R, Steinman, L. Innate and adaptive autoimmunity directed to the central nervous system. Neuron. 2009; 64: 123–32.CrossRefGoogle ScholarPubMed
2. Prat, A, Antel, J. Pathogenesis of multiple sclerosis. Curr Opin Neurol. 2005; 18: 225–30.CrossRefGoogle ScholarPubMed
3. Agrawal, SM, Yong, VW. Immunopathogenesis of multiple sclerosis. Int Rev Neurobiol. 2007; 79: 99–126.CrossRefGoogle ScholarPubMed
4. Frohman, EM, Racke, MK, Raine, CS. Multiple sclerosis--the plaque and its pathogenesis. N Engl J Med. 2006; 354: 942–55.CrossRefGoogle ScholarPubMed
5. Compston, A, Coles, A. Multiple sclerosis. Lancet. 2008; 372: 1502–17.Google Scholar
6. Waxman, SG. Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nat Rev Neurosci. 2006; 7: 932–41.CrossRefGoogle ScholarPubMed
7. Trapp, BD, Peterson, J, Ransohoff, RM, Rudick, R, Mork, S, Bo, L. Axonal transection in the lesions of multiple sclerosis. N Engl J Med. 1998; 338: 278–85.Google Scholar
8. Trapp, BD, Stys, PK. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurol. 2009; 8: 280–91.CrossRefGoogle ScholarPubMed
9. Frohman, EM, Filippi, M, Stuve, O et al. Characterizing the mechanisms of progression in multiple sclerosis: evidence and new hypotheses for future directions. Arch Neurol. 2005; 62: 1345–56.Google Scholar
10. Kornek, B, Lassmann, H. Axonal pathology in multiple sclerosis. A historical note. Brain Pathol. 1999; 9: 651–6.Google Scholar
11. Lassmann, H. The pathology of multiple sclerosis and its evolution. Philos Trans R Soc Lond B Biol Sci. 1999; 354: 1635–40.CrossRefGoogle ScholarPubMed
12. Geurts, JJ, Stys, PK, Minagar, A, Amor, S, Zivadinov, R. Gray matter pathology in (chronic) MS: Modern views on an early observation. J Neurol Sci. 2009;Google Scholar
13. Vercellino, M, Masera, S, Lorenzatti, M, et al. Demyelination, inflammation, and neurodegeneration in multiple sclerosis deep gray matter. J Neuropathol Exp Neurol. 2009; 68: 489502.Google Scholar
14. Rudick, RA, Trapp, BD. Gray-matter injury in multiple sclerosis. N Engl J Med. 2009; 361: 1505–6.Google Scholar
15. Bo, L. The histopathology of grey matter demyelination in multiple sclerosis. Acta Neurol Scand Suppl. 2009; 51–7.Google Scholar
16. Giraudon, P, Bernard, A. Chronic viral infections of the central nervous system: Aspects specific to multiple sclerosis. Rev Neurol (Paris). 2009; 165: 789–95.Google Scholar
17. Kurtzke, JF. Epidemiology and etiology of multiple sclerosis. Phys Med Rehabil Clin N Am. 2005; 161: 327–49.Google Scholar
18. Kantarci, O, Wingerchuk, D. Epidemiology and natural history of multiple sclerosis: new insights. Curr Opin Neurol. 2006; 19: 248–54.Google Scholar
19. Ascherio, A, Munger, KL. Environmental risk factors for multiple sclerosis. Part II: Noninfectious factors. Ann Neurol. 2007; 61: 504–13.Google Scholar
20. Pugliatti, M, Harbo, HF, Holmoy, T, et al. Environmental risk factors in multiple sclerosis. Acta Neurol Scand Suppl. 2008; 188: 3440.CrossRefGoogle ScholarPubMed
21. Oksenberg, JR, Baranzini, SE, Sawcer, S, Hauser, SL. The genetics of multiple sclerosis: SNPs to pathways to pathogenesis. Nat Rev Genet. 2008; 9: 516–26.Google Scholar
22. Ebers, GC. Environmental factors and multiple sclerosis. Lancet Neurol. 2008; 7: 268–77.Google Scholar
23. Hawkes, CH, Macgregor, AJ. Twin studies and the heritability of MS: a conclusion. Mult Scler. 2009; 15: 661–7.CrossRefGoogle ScholarPubMed
24. Lassmann, H. Models of multiple sclerosis: new insights into pathophysiology and repair. Curr Opin Neurol. 2008; 21: 242–7.Google Scholar
25. Huizinga, R, Linington, C, Amor, S. Resistance is futile: antineuronal autoimmunity in multiple sclerosis. Trends Immunol. 2008; 29: 54–60.Google Scholar
26. Bruck, W. Inflammatory demyelination is not central to the pathogenesis of multiple sclerosis. J Neurol. 2005; 252 Suppl 5: 1015.Google Scholar
27. Trapp, BD, Nave, KA. Multiple sclerosis: an immune or neurodegenerative disorder? Annu Rev Neurosci. 2008; 31: 247–69.Google Scholar
28. Confavreux, C, Vukusic, S. Accumulation of irreversible disability in multiple sclerosis: from epidemiology to treatment. Clin Neurol Neurosurg. 2006; 108: 327–32.Google Scholar
29. Charil, A, Filippi, M. Inflammatory demyelination and neurodegeneration in early multiple sclerosis. J Neurol Sci. 2007; 259: 715.Google Scholar
30. Henderson, AP, Barnett, MH, Parratt, JD, Prineas, JW. Multiple sclerosis: distribution of inflammatory cells in newly forming lesions. Ann Neurol. 2009; 66: 739–53.Google Scholar
31. Rodriguez, M, Scheithauer, B. Ultrastructure of multiple sclerosis. Ultrastruct Pathol. 1994; 18: 313.Google Scholar
32. Barger, SW, Basile, AS. Activation of microglia by secreted amyloid precursor protein evokes release of glutamate by cystine exchange and attenuates synaptic function. J Neurochem. 2001; 76: 846–54.CrossRefGoogle ScholarPubMed
33. Smith, KJ, Lassmann, H. The role of nitric oxide in multiple sclerosis. Lancet Neurol. 2002; 1: 232–41.Google Scholar
34. Hohlfeld, R. Biotechnological agents for the immunotherapy of multiple sclerosis. Principles, problems and perspectives. Brain. 1997; 120: 865916.Google Scholar
35. Nave, KA, Trapp, BD. Axon-glial signaling and the glial support of axon function. Annu Rev Neurosci. 2008; 31: 535–61.Google Scholar
36. Patrikios, P, Stadelmann, C, Kutzelnigg, A, et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain. 2006; 129: 3165–72.Google Scholar
37. Goldschmidt, T, Antel, J, Konig, FB, Bruck, W, Kuhlmann, T. Remyelination capacity of the MS brain decreases with disease chronicity. Neurology. 2009; 72: 1914–21.Google Scholar
38. Coles, AJ, Wing, MG, Molyneux, P, et al. Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol. 1999; 46: 296304.Google Scholar
39. Scalfari, A, Neuhaus, A, Degenhardt, A, et al. The natural history of multiple sclerosis, a geographically based study 10: relapses and long-term disability. Brain. 2010 Jul; 133(Pt 7): 1914–29.CrossRefGoogle ScholarPubMed
40. Bielekova, B, Goodwin, B, Richert, N, et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med. 2000; 6: 1167–75.Google Scholar
41. Podbielska, M, Hogan, EL. Molecular and immunogenic features of myelin lipids: incitants or modulators of multiple sclerosis? Mult Scler. 2009; 15: 1011–29.Google Scholar
42. Moscarello, MA, Mastronardi, FG, Wood, DD. The role of citrullinated proteins suggests a novel mechanism in the pathogenesis of multiple sclerosis. Neurochem Res. 2007; 32: 251–6.Google Scholar
43. Kanter, JL, Narayana, S, Ho, PP, et al. Lipid microarrays identify key mediators of autoimmune brain inflammation. Nat Med. 2006; 12: 138ߝ43.Google Scholar
44. Antel, J. Oligodendrocyte/myelin injury and repair as a function of the central nervous system environment. Clin Neurol Neurosurg. 2006; 108: 245–9.Google Scholar
45. Miller, DH, Leary, SM. Primary-progressive multiple sclerosis. Lancet Neurol. 2007; 6: 903–12.Google Scholar
46. Rojas, JI, Romano, M, Ciapponi, A, Patrucco, L, Cristiano, E. Interferon beta for primary progressive multiple sclerosis. Cochrane Database Syst Rev. 2009; CD006643.Google Scholar
47. Cooper, GS, Stroehla, BC. The epidemiology of autoimmune diseases. Autoimmun Rev. 2003; 2: 119–25.Google Scholar
48. Dyment, DA, Ebers, GC, Sadovnick, AD. Genetics of multiple sclerosis. Lancet Neurol. 2004; 3: 104–10.Google Scholar
49. Kremenchutzky, M, Rice, GP, Baskerville, J, Wingerchuk, DM, Ebers, GC. The natural history of multiple sclerosis: a geographically based study 9: observations on the progressive phase of the disease. Brain. 2006; 129: 584–94.Google Scholar
50. Confavreux, C, Vukusic, S. Natural history of multiple sclerosis: a unifying concept. Brain. 2006; 129: 606–16.Google Scholar
51. Confavreux, C, Vukusic, S, Moreau, T, Adeleine, P. Relapses and progression of disability in multiple sclerosis. N Engl J Med. 2000; 343: 1430–8.Google Scholar
52. Cottrell, DA, Kremenchutzky, M, Rice, GP, et al. The natural history of multiple sclerosis: a geographically based study. 5. The clinical features and natural history of primary progressive multiple sclerosis. Brain. 1999; 122: 625–39.CrossRefGoogle ScholarPubMed
53. Capello, E, Mancardi, GL. Marburg type and Balo’s concentric sclerosis: rare and acute variants of multiple sclerosis. Neurol Sci. 2004; 25 Suppl 4: S361–3.CrossRefGoogle ScholarPubMed
54. Lucchinetti, CF, Gavrilova, RH, Metz, I, et al. Clinical and radiographic spectrum of pathologically confirmed tumefactive multiple sclerosis. Brain. 2008; 131: 1759–75.Google Scholar
55. Capello, E, Vuolo, L, Gualandi, F, et al. Autologous haematopoietic stem-cell transplantation in multiple sclerosis: benefits and risks. Neurol Sci. 2009; 30 Suppl 2: S175–7.Google Scholar
56. Jones, JL, Coles, AJ. Spotlight on alemtuzumab. Int MS J. 2009 Sep; 16(3): 7781.Google Scholar
57. Hauser, SL, Waubant, E, Arnold, DL, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008; 358: 676–88.Google Scholar
58. Hawker, K, O’Connor, P, Freedman, MS, et al. Rituximab in patients with primary progressive multiple sclerosis: results of a randomized double-blind placebo-controlled multicenter trial. Ann Neurol. 2009; 66: 460–71.Google Scholar
59. Metz, I, Lucchinetti, CF, Openshaw, H, et al. Autologous haematopoietic stem cell transplantation fails to stop demyelination and neurodegeneration in multiple sclerosis. Brain. 2007; 130: 1254–62.Google Scholar
60. Frischer, JM, Bramow, S, Dal-Bianco, A, et al. The relation between inflammation and neurodegeneration in multiple sclerosis brains. Brain. 2009; 132: 1175–89.CrossRefGoogle ScholarPubMed
61. Warshawsky, I, Rudick, RA, Staugaitis, SM, Natowicz, MR. Primary progressive multiple sclerosis as a phenotype of a PLP1 gene mutation. Ann Neurol. 2005; 58: 470–3.Google Scholar
62. Dooley, JM, Wright, BA. Adrenoleukodystrophy mimicking multiple sclerosis. Can J Neurol Sci. 1985; 12: 73ߝ4.Google Scholar
63. Moser, HW. Adrenoleukodystrophy: phenotype, genetics, pathogenesis and therapy. Brain. 1997; 120: 1485–508.Google Scholar
64. Kumar, AJ, Rosenbaum, AE, Naidu, S, et al. Adrenoleukodystrophy: correlating MR imaging with CT. Radiology. 1987; 165: 497504.Google Scholar
65. Kruse, B, Barker, PB, van Zijl, PC, Duyn, JH, Moonen, CT, Moser, HW. Multislice proton magnetic resonance spectroscopic imaging in X-linked adrenoleukodystrophy. Ann Neurol. 1994; 36: 595608.Google Scholar
66. Palace, J. Multiple sclerosis associated with Leber’s Hereditary Optic Neuropathy. J Neurol Sci. 2009; 286: 24’7.Google Scholar
67. Kovacs, GG, Hoftberger, R, Majtenyi, K, et al. Neuropathology of white matter disease in Leber’s hereditary optic neuropathy. Brain. 2005; 128: 3541.Google Scholar
68. Salvetti, M, Giovannoni, G, Aloisi, F. Epstein-Barr virus and multiple sclerosis. Curr Opin Neurol. 2009; 22: 201–6.CrossRefGoogle ScholarPubMed
69. Lunemann, JD, Kamradt, T, Martin, R, Munz, C. Epstein-barr virus: environmental trigger of multiple sclerosis? J Virol. 2007; 81: 6777–84.Google Scholar
70. Vaughan, JH. The Epstein-Barr virus in autoimmunity. Springer Semin Immunopathol. 1995; 17: 203–30.Google Scholar
71. Poole, BD, Scofield, RH, Harley, JB, James, JA. Epstein-Barr virus and molecular mimicry in systemic lupus erythematosus. Autoimmunity. 2006; 39: 6370.CrossRefGoogle ScholarPubMed
72. Vento, S, Guella, L, Mirandola, F, et al. Epstein-Barr virus as a trigger for autoimmune hepatitis in susceptible individuals. Lancet. 1995; 346: 608–9.Google Scholar