Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-23T21:11:11.450Z Has data issue: false hasContentIssue false

MR-Pathological Comparison in F98-Fischer Glioma Model Using a Human Gantry

Published online by Cambridge University Press:  02 December 2014

Jocelyn Blanchard
Affiliation:
Division of Neurosurgery and Neuro-oncology, Department of Surgery, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke University, Sherbrooke, QC, Canada
David Mathieu
Affiliation:
Division of Neurosurgery and Neuro-oncology, Department of Surgery, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke University, Sherbrooke, QC, Canada
Yves Patenaude
Affiliation:
Department of Radiology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke University, Sherbrooke, QC, Canada
David Fortin*
Affiliation:
Division of Neurosurgery and Neuro-oncology, Department of Surgery, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke University, Sherbrooke, QC, Canada
*
Centre Hospitalier Universitaire de Sherbrooke, 3001 12e avenue Nord, Sherbrooke, Quebec, J1H 5N4, Canada
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Object:

This study reports our findings in assessing in vivo tumour growth with magnetic resonance imaging using a commercial magnet and antenna in F98 implanted Fischer rats. A comparison of T1 gadolinium-enhanced coronal MR scans and pathology specimens in corresponding animals was accomplished.

Methods:

One rat was used in serial experiments to establish adequate imaging parameters. Afterward, 12 animals implanted with F98 cells underwent a MR study following intervals spanning five, ten, 15 and 20 days on a 1.5T human Siemens. Using a small loop antenna, a coronal T1 weighted MRI scan with Gadolinium was performed. Images were analyzed and volumes of enhancing tumour were calculated. The animals were sacrificed after the imaging procedure and brain were harvested and processed in pathology. Pathology specimens and MR images were analyzed using image processing software. One hematoxylin + eosin (H&E) slide per specimen was compared to the corresponding MR slice depicting the largest area of enhancement.

Results:

The MR enhancement areas obtained were 2.18mm2, 8.25mm2, 21.6mm2 and 23.17mm2 at five, ten, 15 and 20 days. Tumour margin measurements on pathologic samples produced areas of 0.29mm2, 4.43 mm2, 8.3mm2, and 12.9mm2 at five, ten, 15 and 20 days respectively.

Conclusion:

The T1-enhancing images constantly overestimated the tumour bulk on H&E. This phenomenon is explained by enhancement of the brain around tumour, the extra-axial tumour growth, and a shrinking factor of 17% related to the fixation process. Nonetheless, the radiological tumour growth paralleled the histological samples. This technology is thus suitable to follow tumour growth in F98 implanted rats.

Résumé

RÉSUMÉ Objet:

Cette étude rapporte nos observations sur l'évaluation de la croissance tumorale in vivo à l'imagerie par résonance magnétique (IRM) en utilisant un aimant et une antenne commerciales chez des rats Fisher chez qui on a implanté un gliome F98. Nous avons comparé l'image coronale en pondération T1 avec injection de gadolinium et le spécimen anatomopathologique de chaque animal.

Méthodes:

Des essais en série sur un rat ont servi à établir les paramètres d'imagerie appropriés. Par la suite, 12 animaux chez qui on avait implanté des cellules F98 ont subi une IRM avec un appareil Siemens 1,5T utilisé chez l'humain, à intervalles de 5, 10, 15 et 20 jours. Une petite antenne en boucle a été utilisée pour obtenir l'IRM coronale avec gadolinium pondérée en T1. Les images ont été analysées et le volume de tumeur rehaussante a été calculé. Les animaux étaient sacrifiés après l'imagerie et le cerveau était prélevé et préparé en pathologie. Les spécimens anatomopathologiques et les images étaient analysées au moyen d'un logiciel de traitement d'image. Une coupe colorée en H&E de chaque spécimen a été comparée à la coupe IRM correspondante décrivant la zone de rehaussement la plus étendue.

Résultats:

Les zones de rehaussement à l'IRM étaient de 2,18 mm2, 8,25 mm2, 21,6 mm2 et 23,17 mm2 après 5, 10, 15 et 20 jours. La mesure du périmètre de la tumeur sur les coupes anatomopathologiques a permis d'évaluer la surface qui était de 0,29 mm2, 4,43 mm2, 8,3 mm2 et 12,9 mm2 après 5, 10, 15 et 20 jours respectivement.

Conclusion:

Les images rehaussées en T1 surestimaient toujours la masse tumorale mesurée sur les coupes H&E. Ce phénomène s'explique par le rehaussement du tissu cérébral autour de la tumeur, la croissance tumorale extra-axiale et un facteur de contraction de 17% dû au processus de fixation. Néanmoins, la croissance tumorale observée à l'imagerie évoluait parallèlement à celle observée en anatomopathologie. Cette technologie convient donc au suivi de la croissance tumorale chez les rats porteurs d'un implant F98.

Type
Experimental Neurosciences
Copyright
Copyright © The Canadian Journal of Neurological 2006

References

1. Binder, DK, Keles, GE, Aldape, K, Berger, MS. Aggressive glialneoplasms. In Batjer, HH, Loftus, CM, editors. Textbook of neurological surgery, principles and practice, Philadelphia: Lippincott Williams & Wilkins; 2003. p. 1270–80.Google Scholar
2. Walker, MD, Alexender, E Jr, Hunt, WE, et al. Evaluation of BCNUand/or radiotherapy in the treatment of anaplastic gliomas. J Neurosurg. 1978;49:333–43. CrossRefGoogle ScholarPubMed
3. Dilmanian, FA, Button, TM, Le Duc, G, et al. Response of ratintracranial 9L gliosarcoma to microbeam radiation therapy. Neuro-Oncology. 2002;4(1):2638.CrossRefGoogle ScholarPubMed
4. Fournier, E. Passirani, C. Montero-Menei, C, et al. Therapeuticeffectiveness of novel 5-fluorouracil-loaded poly(methylidene malonate 2.1.2)-based microspheres on F98 glioma-bearing rats. Cancer. 2003;97(11):2822–9.CrossRefGoogle Scholar
5. Pavillard, V, Kherfellah, D, Richard, S, et al. Effects of thecombination of camptothecin and doxorubicin or etoposide on rat glioma cells and camptothecin-resistant variants. Br J Cancer. 2001;85(7):1077–83.CrossRefGoogle ScholarPubMed
6. Jean, WC, Spellman, SR, Wallenfriedman, MA, et al. Interleukin-12-based immunotherapy against rat 9L glioma. [Journal Article] Neurosurgery. 1998;42(4):850–6.CrossRefGoogle ScholarPubMed
7. Gridley, DS, Baer, JR, Cao, JD, et al. TNF-alpha gene and protonradiotherapy in an orthotopic brain tumor model. Int J Oncol. 2002;21(2):251–9.Google Scholar
8. Weyerbrock, A, Walbridge, S, Pluta, RM, et al. Selective opening ofthe blood-tumor barrier by a nitric oxide donor and long-term survival in rats with C6 gliomas. J Neurosurg. 2003;99:728–37.CrossRefGoogle Scholar
9. Wilkins, DE, Raaphorst, GP, Saunders, JK, et al. Correlation betweenGd-enhanced MR imaging and histopathology in treated and untreated 9L rat brain tumors. Magn Reson Imaging. 1995;13;1:8996.Google Scholar
10. San-Galli, F, Vrignaud, P, Robert, J, et al. Assessment of theexperimental model of transplanted C6 glioblastoma in Wistarrats. J Neurooncol. 1989;7(3):299304.CrossRefGoogle Scholar
11. Raila, FA, Bowles, AP, Perkins, E, Terrell, A. Sequential imaging andvolumetric analysis of an intracerebral C6 glioma by means of a clinical MRI system. J Neurooncol. 1999;43:1117.CrossRefGoogle ScholarPubMed
12. Thorsen, F, Ersland, L, Nordli, H et al. Imaging of experimental ratglioma using a clinical MR scanner. J Neuroncol. 2003;63:225–31.CrossRefGoogle Scholar
13. Kish, EP, Blaivas, M, Strawderman, M et al. Magnetic resonanceimaging of ethyl-nitrosourea-induced rat glimasa model for experimental therapeutics of low-grade gliomas. J Neurooncol. 2001;53:243–57.CrossRefGoogle Scholar
14. Ross, BD, Zhao, YJ, Neal, ER, et al. Contributions of cell kill andposttreatment tumor growth rates to the repopulation of intracerebral 9L tumors after chemotherapyan MRI study. Proc Natl Acad Sci USA. 1998;95:7012–17.CrossRefGoogle Scholar
15. Le Duc, G, Péoc’h, M, Rémy, C, et al. Use of T2-weightedsusceptibility contrast MRI for mapping the blood volume in the glioma-bearing rat brain. Magn Reson Med. 1999;24:754–61.3.0.CO;2-Q>CrossRefGoogle Scholar
16. Nelson, AL, Algon, SA, Munasinghe, J, et al. Magnetic resonanceimaging of patched heterozygous and xenografted mouse braintumors. J Neurooncol. 2003;62:259–67.CrossRefGoogle Scholar
17. Schmiedl, UP, Kenney, J, Maravilla, KR, Kinetics of pathologic blood-brain-barrier permeability in an astrocytic glioma using contrast-enhanced MR. Am J Neuroradiol. 1992;13:514.Google Scholar
18. Kenney, J, Schmiedl, U, Maravilla, K, et al. Measurement of blood-brain barrier permeability in a tumor model using magnetic resonance imaging with gadolinium-DTPA. Magn Reson Med. 1992;27:6875.CrossRefGoogle Scholar
19. Yunting, Z, Jianling, C, Xuwen, L, et al. MR imaging in rat gliomamodel and gene therapy using EGFR antisense RNA. Chin Med J (Engl). 1998;11:993–7.Google Scholar
20. Mathieu, D, Lamarche, JB, Fortin, D. The importance of a syngeneicglioma implantation modelThe F98/Fischer rat model. Can J Neurol Sci. 2002; A-05 Suppl S1–9.Google Scholar
21. Ko, L, Koestner, A, Wechsler, W. Morphological characterization ofnitrosourea-induced glioma cell lines and clones. Acta Neuropathol. 1980;51:2331.CrossRefGoogle ScholarPubMed
22. Kobayashi, N, Allen, N, Clendenon, NR, Ko, L. An improved rat braintumor model. J Neurosurg. 1980;53:808–15.CrossRefGoogle ScholarPubMed
23. Tzeng, JJ, Barth, RF, Orosz, CG, James, SM. Phenotype and functionalactivity of tumor-infiltrating lymphocytes isolated from immunogenic and nonimmunogenic rat brain tumors. Cancer Res. 1991;51:2373–8.Google Scholar
24. Eis, M, Els, T, Hoehn-Berlage, M. High resolution quantitativerelaxation and diffusion MRI of three different experimental brain tumors in rat. Magn Reson Med. 1995;34:835–44.CrossRefGoogle ScholarPubMed
25. Ernestus, RI, Wilmes, LJ, Hoehn-Berlage, M. Identification ofintracranial liqor metastases of experimental stereotactically implanted brain tumors by tumor-selective MRI contrast agent MnTPPS. Clin Exp Metastasis. 1992;10:345–50.CrossRefGoogle Scholar
26. Wree, A, Goller, HJ, Beck, T. Local cerebral glucose utilization inperfusion-fixed rat brains. J Neurosci Methods. 1995;58:143–9.CrossRefGoogle ScholarPubMed
27. Bancroft, JD, Stevens, A, editors. Theory and practice of histologicaltechniques. 4th edition. Edinburgh; Churchill Livingstone; 1996.Google Scholar
28. Prabhu, SS, Broaddus, WC, Oveissi, C, et al. Determination ofintracranial tumor volumes in a rodent brain using magnetic resonance imaging, evans blue, and histologya comparativestudy. IEEE Trans Biomed Eng. 2000;47:2; 259–65.CrossRefGoogle Scholar
29. Barth, RF. Rat brain tumor models in experimental neuro-oncology:the 9L, C6, T9, F98, RG2 (D74), RT2 and CNS-1 gliomas. J Neurooncol. 1998;36:91102.CrossRefGoogle Scholar