Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-23T21:05:34.888Z Has data issue: false hasContentIssue false

Mechanisms of the “Low-Flow” State during Resuscitation of the Totally Ischemic Brain

Published online by Cambridge University Press:  03 July 2018

W. A. Tweed*
Affiliation:
Departments of Anesthesia and Pharmacology & Therapeutics Faculty of Medicine, University of Manitoba
J. G. Wade
Affiliation:
Departments of Anesthesia and Pharmacology & Therapeutics Faculty of Medicine, University of Manitoba
W. J. Davidson
Affiliation:
Departments of Anesthesia and Pharmacology & Therapeutics Faculty of Medicine, University of Manitoba
*
Department of Anesthesia, University of Manitoba, Health Sciences Centre — General, 700 William Ave., Winnipeg, Canada. R3E 0Z3.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Resuscitation of the brain following total circulatory arrest may be impeded by difficulty in establishing cerebral tissue perfusion, a post-ischemic “low-flow” state. We have confirmed this hypothesis in a rat model of total cerebral ischemia and have demonstrated marked improvement in post-ischemic brain tissue perfusion following epinephrine injection. This is mainly due to the systemic vascular effects of epinephrine, resulting in improved central aortic pressure and cerebral perfusion pressure. Hyperkalemic induced vasoconstriction has also been postulated as a cause of the “low-flow”. We have, therefore, investigated the in vitro effects of increasing potassium ion concentration on cerebrovascular smooth muscle strips. Large arteries constrict, while small arteries dilate in response to hyperkalemia. The net effect on cerebral blood flow remains unsettled. Our research to date suggests that resuscitation of the totally ischemic brain, in animal models at least, is enhanced by epinephrine, mainly via its effects on central aortic pressure.

Résumé

Résumé

La réactivation du cerveau après un arrêt cardiaque complet peut être entravée par la difficulté d’établir la perfusion du tissu cérébral, un état de lenteur du flot post-ischémique. Nous avons confirmé cette hypothèse dans un modèle d’ischémie cérébrale totale chez le rat et avons démontré une amélioration marquée dans la perfusion post-ischémique du tissu cérébral après une injection d’épinéphrine. Ceci est principalement dû aux effets vasculaires systémiques de l’épinéphrine, résultant en une amélioration de la pression aortique centrale et de la pression de la perfusion cérébrale. Une vasoconstriction induite par l’hyperkaliémie a également été postulée comme cause possible de ce flot lent. Nous avons donc investigué les effets in vitro de l’augmentation de la concentration de l’ion potassium sur des bandes de muscles lisses de la vasculature cérébrale. Les grandes artères rétrécissent, pendant que les petites artères se dilatent en réponse à l’hyperkaliémie. L’effet sur le débit sanguin cérébral demeure incertain. Notre recherche à date suggère que la réactivation du cerveau totalement ischémique, du moins dans certains modèles animaux, est augmentée par l’épinéphrine, principalement via ses effets sur la pression aortique centrale.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1977

References

Ames, A., Wright, L. and Kowada, M. et al. (1968). Cerebral ischemia II. The no-reflow phenomenon. Amer. J. Path. 52, 437448.Google Scholar
Cantu, R. C., Ames, A., Digiacinto, G. and Dixon, J. (1969). Hypotension: A major factor limiting recovery from cerebral ischemia. J. of Surgical Research. 9: 525529.CrossRefGoogle Scholar
Chiang, J., Kowada, M. and Ames, A., et al. (1968). Cerebral ischemia III. Vascular changes. Amer J Path. 52: 455463.Google Scholar
Fischer, E. G. and Ames, A. (1972). Studies on mechanisms of impairment of cerebral circulation following ischemia: Effect of hemodilution of perfusion pressure. Stroke. 3: 538542.CrossRefGoogle ScholarPubMed
Fischer, E. C. (1973). Impaired perfusion following cerebrovascular stasis. Arch. Neurol. 29: 361364.CrossRefGoogle ScholarPubMed
Ginsberg, M. D. and Myers, R. E. (1972). The topography of impaired microvascular perfusion in the primate brain following total circulatory arrest. Neurology. 22: 9981011.Google Scholar
Hossmann, K. A. and Olsson, Y. (1970). Suppression and recovery of neuronal function in transient cerebral ischemia. Brain Res. 22: 313325.Google Scholar
Hossmann, K. A. and Lechtape-Grüter, H. (1971/72). Blood flow and recovery of the cat brain after complete ischemia for 1 hour. European Neurology. 6: 318322.Google Scholar
Hossmann, V. and Hossmann, K. A. (1973). Return of neuronal functions after prolonged cardiac arrest. Brain Research. 60:423437 Google Scholar
Little, J. R., Kerr, F. W L. and Sundt, T. M. (1976). Microcirculatory obstruction in focal cerebral ischemia: An electron microscopic investigation in monkeys. Stroke. 7: 2529.Google Scholar
Morris, M. (1974). Hypoxie and extracellular potassium activity in the guinea-pig cortex. Can. J. Physiol. Pharmacol. 52: 872882.CrossRefGoogle Scholar
Olsson, Y. and Hossmann, K. A. (1971). The effect of intravascular saline perfusion on the sequelae of transient cerebral ischemia. Light and electron microscopal observations. Acta. Neuropath. (Berlin). 17: 6879.CrossRefGoogle ScholarPubMed
Osburne, R. C. and Halsey, J. H. (1975). Cerebral blood flow. A predictor of recovery from ischemia in the gerbil. Arch. Neurol. 32: 457461.Google Scholar
Safar, P., Stezoski, W. and Nemoto, E. M. (1976). Amelioration of brain damage after 12 mintues cardiac arrest in dogs. Arch. Neurol. 33: 9195.Google Scholar
Wade, J. G., Amtorp, O. and Sorensen, S. C. (1975). The “Low-flow” stateing cerebral ischemia. Arch. Neurol. 32: 381384.Google Scholar
Wade, J. G., Tweed, W. A. and Davidson, W. J. (1976). The “Low-flow” state following total cerebral ischemia. In Brain Edema: Formation and resolution. Ed. Hanna Pappius, . Springer-Verlag (Heidelberg).Google Scholar
Yashon, D., Wagner, F. C. and White, R. J., et al. (1971). Intracranial pressure during circulatory arrest. Brain Res. 31: 139150.CrossRefGoogle ScholarPubMed