Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T20:50:49.658Z Has data issue: false hasContentIssue false

Magnetic Resonance Imaging of Asians with Multiple Sclerosis was Similar to that of the West

Published online by Cambridge University Press:  02 December 2014

H.T. Chong*
Affiliation:
University of Malaya, Sungkyunkwan University School of Medicine, Seoul, Korea
N. Ramli
Affiliation:
University of Malaya, Sungkyunkwan University School of Medicine, Seoul, Korea
K.H. Lee
Affiliation:
Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
B.J. Kim
Affiliation:
Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
M. Ursekar
Affiliation:
Jankharia Neuroimaging Center, Bombay, India
K. Dayananda
Affiliation:
Mumbai, Bombay Hospital Institute of Medical Sciences, Bombay, India
B.S. Singhal
Affiliation:
Mumbai, Bombay Hospital Institute of Medical Sciences, Bombay, India
J. Chong
Affiliation:
National University of Singapore, Singapore
L.L. Chan
Affiliation:
Singapore General Hospital, Singapore
Y.Y. Seetoh
Affiliation:
National Neuroscience Institute, Singapore
O. Chawalparit
Affiliation:
Siriraj Hospital, Bangkok, Thailand
N. Prayoonwiwat
Affiliation:
Siriraj Hospital, Bangkok, Thailand
F.C. Chang
Affiliation:
Veterans General Hospital, Taipei, Taiwan
C.P. Tsai
Affiliation:
Veterans General Hospital, Taipei, Taiwan
P.C.K. Li
Affiliation:
Queen Elizabeth Hospital, Hong Kong
C.T. Tan
Affiliation:
University of Malaya, Sungkyunkwan University School of Medicine, Seoul, Korea
*
Neurology Laboratory, University of Malaya Medical Centre, 59100 Kuala Lumpar, Malaysia
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Magnetic resonance imaging (MRI) of the brain is the most important paraclinical diagnostic test in multiple sclerosis (MS). The appearance of MRI in Asians with MS is not well defined. We retrospectively surveyed the first brain and spinal cord MRI in patients diagnosed to have MS, according to Poser's criteria in seven regions throughout Asia to define the MRI changes among Asians with MS. There were 101 patients with first brain, and 86 with first spinal cord MRI, 66 of whom had both. The brain MRI showed a mean of 17 lesions per patient in T2 weighted images, mostly asymptomatic. Almost all the lesions were in the white matter, particularly in the juxtacortical, deep and periventricular white matter. A third of the lesions were greater than 5 mm, 14% enhanced with gadolinium. There were more supratentorial than infratentorial lesions at a ratio of 7.5: 1. Ninety five percent of the spinal cord lesions were in cervical and thoracic regions, 34% enhanced with gadolinium. The lesions extended over a mean of 3.6 ± 3.3 vertebral bodies in length. Fifty (50%) of the brain and 54 (63%) of the spinal MRI patients had the optic-spinal form of MS. The MRI of the optic-spinal and classical groups of patients were similar in appearance and distribution, except that the optic-spinal MS patients have fewer brain but longer and more severe spinal cord lesions. In conclusion, the brain and spinal cord MRI of Asian patients with MS was similar to that of the West, although, in this study, Asian MS patients had larger spinal cord lesions.

Résumé

RÉSUMÉ

L'imagerie par résonance magnétique (IRM) du cerveau est l'épreuve diagnostique paraclinique la plus importante dans la sclérose en plaques (SEP). Les caractéristiques de l'IRM chez les Asiatiques atteints de SEP sont mal connues. Nous avons analysé rétrospectivement l'IRM initiale du cerveau et de la moelle épinière chez des patients dont le diagnostic de SEP avait été fait selon les critères de Poser dans sept régions d'Asie, afin de préciser les changements observés à l'IRM chez des Asiatiques atteints de SEP. L'imagerie du cerveau était disponible chez 101 patients, celle de la moelle épinière chez 86 patients et celle du cerveau et de la moelle épinière chez 66 patients. À l'IRM du cerveau, le nombre moyen de lésions par patient était de 17 sur les images pondérées en T2, ces lésions étant en grande partie asymptomatiques. Presque toutes les lésions étaient situées dans la substance blanche, surtout juxtacorticale, profonde et périventriculaire. Le tiers des lésions étaient de plus de 5 mm et 14% étaient rehaussantes à l'examen avec gadolinium. Il y avait plus de lésions sus-tentorielles que sous-tentorielles, pour un ratio de 7,5 à 1. Quatre-vingt-quinze pour cent des lésions de la moelle épinière étaient dans la région cervicale et la région thoracique et 34% étaient rehaussantes à l'examen avec gadolinium. Les lésions s'étendaient en moyenne sur une longueur correspondant à 3,6 ± 3,3 corps vertébraux. Cinquante patients (50%) ayant subi une IRM du cerveau et 54 patients (64%) ayant subi une IRM de la moelle épinière avaient une forme optique et spinale de la SEP. À l'IRM, l'apparence et la distribution des lésions des groupes optique-spinal et classique étaient semblables sauf que les patients atteints de la forme optique-spinale avaient moins de lésions cérébrales et des lésions plus longues et plus sévères à la moelle épinière. L'IRM du cerveau et de la moelle épinière.

Type
Exchange Article
Copyright
Copyright © The Canadian Journal of Neurological 2006

References

1. Poser, CM, Paty, DW, Scheinberg, L, et al. New diagnostic criteria formultiple sclerosis: Guidelines for research protocols. Ann Neurol. 1983; 13(3): 227–31.Google Scholar
2. Paty, DW, Oger, JJF, Kastrukoff, LF, et al. MRI in the diagnosis of MS: A prospective study with comparison of clinical evaluation, evoked potentials, oligoclonal banding, and CT. Neurology. 1988; 38: 180–5.Google Scholar
3. Fazekas, F, Offenbacher, H, Fuchs, S, et al. Criteria for an increasedspecificity of MRI interpretation in elderly subjects with suspected multiple sclerosis. Neurology. 1988; 38: 1822–5.Google Scholar
4. Lycklama, A, Nijeholt, GJ, van Walderveen, MAA, et al. Brain andspinal cord abnormalities in multiple sclerosis: Correlation between MRI parameters, clinical subtypes and symptoms. Brain. 1998; 121: 687–97.Google Scholar
5. Grossman, RI, Gonzalez-Scarano, F, Atlas, SW, Galetta, S, Silberberg, DH. Multiple sclerosis: Gadolinium enhancement in MR imaging. Radiology. 1995; 196: 505–10.Google Scholar
6. Katz, D, Taubenberger, J, Raine, C, McFarlin, D, McFarland, H. Gadolinium-enhancing lesions on magnetic resonance imaging: Neuropathological findings. Ann Neurol. 1990; 28: 243.Google Scholar
7. Nesbit, GM, Forbes, GS, Scheithauer, BW, Okazaki, H, Rodriguez, M. Multiple sclerosis: Histopathologic and MR and /or CT correlation in 37 cases at biopsy and three cases at autopsy. Radiology. 1991; 180: 467–74.Google Scholar
8. Tas, MW, Barkhof, F, van Walderveen, MAA, Polman, CH, Hommes, OR, Valk, J. The effect of gadolinium on the sensitivity and specificity of MR in the initial diagnosis of multiple sclerosis. Am J Neuroradiol. 1995; 16: 259–64.Google Scholar
9. Gean-Marton, AD, Vezina, LG, Marton, KI, et al Abnormal corpuscallosum: A sensitive and specific indicator of multiple sclerosis. Radiology. 1991; 180: 215–21.Google Scholar
10. Horowitz, AL, Kaplan, RD, Grewe, G, White, RT, Salberg, LM. Theovoid lesion: a new MR observation in patients with multiplesclerosis. Am J Neuroradiol. 1989; 10: 303–5.Google Scholar
11. Simon, JH, Holtas, SL, Schiffer, RB, et al. Corpus callosum andsubcallosal-periventricular lesions in multiple sclerosis:Detection with MR. Radiology. 1986; 160: 363–7.Google Scholar
12. Morrissye, SP, Miller, DH, Kendall, BE, et al. The significance ofbrain magnetic resonance imaging abnormalities at presentation with clinically isolated syndromes suggestive of multiple sclerosis. Brain. 1993; 116: 135–46.Google Scholar
13. O’Riordan, JI, Thompson, AJ, Kingsley, DPE, et al. The prognosticvalue of brain MRI in clinically isolated syndromes of the CNS.A 10-year follow-up. Brain. 1998; 121: 459503.Google Scholar
14. Barkhof, F, Filippi, M, Miller, DH, et al. Comparison of MRI criteriaat first presentation to predict conversion to clinically definitemultiple sclerosis. Brain. 1997; 120: 2059–69.Google Scholar
15. McDonald, WI, Compston, A, Edan, G, et al. Recommendeddiagnostic criteria for multiple sclerosis: Guidelines from the international panel on the diagnosis of multiple sclerosis. Ann Neurol. 2001; 50: 121–7.Google Scholar
16. Thielen, KR, Miller, GM. Multiple sclerosis of the spinal cord:Magnetic resonance appearance. Neuroradiology. 1996; 20(3): 434–8.Google Scholar
17. Kidd, D, Thorpe, JW, Thompson, AJ, et al. Spinal cord MRI usingmulti-array coils and fast spin echo. Neurology. 1993; 43: 2632–7.Google Scholar
18. Honig, L, Sheremata, W. Magnetic resonance imaging of spinal cordlesions in multiple sclerosis. J Neurol Neurosurg Psychiatry. 1989; 52: 469–6.Google Scholar
19. Bot, JCJ, Barkhof, F, Polman, CH, et al. Spinal cord abnormalities inrecently diagnosed MS patients: Added value of spinal MRI examination. Neurology. 2004; 62: 226–33.Google Scholar
20. Chong, HT, Li, PCK, Ong, B, et al. Severe spinal cord involvement isauniversal feature of Asians with multiple sclerosis: Ajoint Asianstudy. Neurol J Southeast Asia. 2002; 7: 3540.Google Scholar
21. Kuroiwa, Y, Igata, A, Itahara, K, Koshijima, S, Tsubaki, T. Nationwidesurvey of multiple sclerosis in Japan. Clinical analysis of 1084 cases. Neurology. 1975; 25: 845–51.CrossRefGoogle Scholar
22. Kuroiwa, Y, Hung, TP, Landsborough, D, Park, CS, Singhal, BS. Multiple sclerosis in Asia. Neurology. 1977; 27: 188–92.CrossRefGoogle ScholarPubMed
23. Tan, CT. Multiple sclerosis in Malaysia. Arch Neurol. 1988; 45(6): 624–7.Google Scholar
24. Tan, CT. Multiple sclerosis in Malaysia. Neurol J Southeast Asia. 1997; 2: 15.Google Scholar
25. Vejjajiva, A. Multiple sclerosis in Thailand. Neurol J Southeast Asia. 1997; 2: 710.Google Scholar
26. Thirugnanam, U. Multiple sclerosis: A retrospective review of 30cases from Singapore. Neurol J Southeast Asia. 1997; 2: 171–5.Google Scholar
27. Arruda, WO, Scola, RH, Teive, HA, Werneck, LC. Multiple sclerosis:report on 200 cases from Curitiba, Southern Brazil and comparison with other Brazilian series. Arq Neuropsiquiatr. 2001; 39 (2A): 165–70.Google Scholar
28. Lana-Peixoto, MA, Lana-Peixoto, MI. Is multiple sclerosis in Braziland Asia alike? Arq Neuropsiquiatr. 1992; 50(4): 419–25.Google Scholar
29. Kioy, PG. Emerging picture of multiple sclerosis in Kenya. East Afr Med J. 2001; 78: 93–6.Google Scholar
30. Cabre, P, Heinzlef, O, Merle, H, et al. MS and neuromyelitis optica in Martinique (French West Indies). Neurology. 2001; 56: 507–14.Google Scholar
31. Modi, G, Mochan, A, Modi, M, Saffer, D. Demyelinating disorder ofthe central nervous system occurring in black South Africans. J Neurol Neurosurg Psychiatry. 2001; 70: 500–5Google Scholar
32. Cree, BAC, Khan, O, Bourdette, D, et al. Clinical characteristics of African Americans vs Caucasian Americans with multiplesclerosis. Neurology. 2004; 63: 2039–45.CrossRefGoogle Scholar
33. Kira, J, Kanai, T, Nishimura, Y, et al. Western versus Asian types of multiple sclerosis: immunogenetically and clinically distinctdisorders. Ann Neurol. 1996; 40:569–74.Google Scholar
34. Misu, T, Fujihara, K, Nakashima, I, et al. Pure optic-spinal form ofmultiple sclerosis in Japan. Brain. 2002; 125: 2460–8.Google Scholar
35. Lee, KH, Hashimoto, SA, Hooge, JP, et al. Magnetic resonanceimaging of the head in the diagnosis of multiple sclerosis: A prospective 2-year follow-up with comparison of clinical evaluation, evoked potentials, oligoclonal banding, and CT. Neurology. 1991; 41: 657–60.Google Scholar
36. Weinshenker, BG. Neuromyelitis optica: what it is and what it mightbe. Lancet 2003; 361: 889–90.CrossRefGoogle Scholar
37. Weinshenker, BG, Fujihara, K, Pittock, SJ, et al. The Asian optic-spinal form of multiple sclerosis is the same entity as neuromyelitis optica in Caucasians: insight from a novel serummarker. Neurology. 2004; 62(Suppl 5): A480–1.Google Scholar