Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T00:45:46.577Z Has data issue: false hasContentIssue false

Imaging of Murine Brain Tumors Using a 1.5 Tesla Clinical MRI System

Published online by Cambridge University Press:  02 December 2014

Wouter R. van Furth
Affiliation:
Arthur & Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
Suzanne Laughlin
Affiliation:
Department of Diagnostic Imaging, Hospital for Sick Children, University of Toronto, Department of Medical Imaging, Toronto, Ontario, Canada
Michael D. Taylor
Affiliation:
Arthur & Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
Bodour Salhia
Affiliation:
Arthur & Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
Todd Mainprize
Affiliation:
Arthur & Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
Mark Henkelman
Affiliation:
Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
Michael D. Cusimano
Affiliation:
Division of Neurosurgery, St. Michael’s Hospital, University of Toronto, Toronto, Ontario, Canada
Cameron Ackerley
Affiliation:
Arthur & Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
James T. Rutka
Affiliation:
Arthur & Sonia Labatt Brain Tumour Research Centre, Hospital for Sick Children, Toronto, Ontario, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

In this study, we investigated the feasibility of using a 1.5 Tesla (T) clinical magnetic resonance imaging (MRI) system for in vivo assessment of three histopathologically different brain tumor models in mice.

Methods:

We selected mouse models in which tumor growth was observed in different intracranial compartments: Patched+/- heterozygous knock-out mice for tumor growth in the cerebellum (n = 5); U87 MG human astrocytoma cells xenografted to the frontal lobe of athymic mice (n =15); and F5 (n = 15) or IOMM-Lee (n = 15) human malignant meningioma cells xenotransplanted to the athymic mouse skull base or convexity. Mice were imaged using a small receiver surface coil and a clinical 1.5 T MRI system. T1- and fast spin echo T2-weighted image sequences were obtained in all animals. Gadolinium was injected via tail vein to better delineate the intracranial tumors. Twenty mice were followed by serial MRI to study tumor growth over time. In these mice, images were typically performed after tumor implantation, and at two week intervals. Mice were euthanized following their last imaging procedure, and their tumors were examined by histopathology. The histopathological preparations were then compared to the last MR images to correlate the imaging features with the pathology.

Results:

Magnetic resonance imaging delineated the tumors in the cerebellum, frontal lobes and skull base in all mouse models. The detection of intracranial tumors was enhanced with prior administration of gadolinium, and the limit of resolution of brain tumors in the mice was 1-2 mm3. Sequential images performed at different time intervals showed progressive tumor growth in all animals. The MR images of tumor size and location correlated accurately with the results of the histopathological analysis.

Conclusion:

Magnetic resonance imaging of murine brain tumors in different intracranial compartments is feasible with a 1.5 T clinical MR system and a specially designed surface coil. Tumors as small as 1-2 mm3 can be detected with good image resolution. Mice harbouring nascent brain tumors can be followed sequentially by serial MR imaging. This may allow for a noninvasive means by which tumor growth can be measured, and novel therapies tested without resorting to sacrifice of the mice.

Résumé:

RÉSUMÉ: Introduction:

Nous avons évalué la possibilité d’utiliser un système d’imagerie par résonance magnétique (IRM) 1.5 Tesla (T) utilisé en clinique pour l’étude in vivo de trois modèles différents au point de vue histopathologique de tumeurs cérébrales chez la souris.

Méthodes:

Nous avons choisi des modèles présentant une tumeur dans différents compartiments intracrâniens: des souris knock-out hétérozygotes Patched+/- pour les tumeurs du cervelet (n = 5); des cellules d’astrocytome humain U87 MG xénotransplantées dans le lobe frontal de souris athymiques (n = 15); et des cellules de méningiome malin humain F5 (n = 15) ou IOMM Lee (n = 15) xénotransplantées à la base du crâne ou à la convexité de souris athymiques. Une petite sonde de surface et un système IRM 1.5 T utilisé en clinique ont été utilisés et on a obtenu des séquences pondérées T1 et écho de spin T2 chez tous les animaux. Du gadolinium a été injecté par la veine de la queue pour mieux faire ressortir les tumeurs intracrâniennes. Vingt souris ont été suivies par IRM sérié pour suivre la croissance tumorale. Chez ces souris, les images ont été obtenues après l’implantation de la tumeur et aux deux semaines par la suite. Les souris ont été sacrifiées après la dernière séance d’imagerie et les tumeurs ont été examinées en histopathologie. Les préparations histopathologiques ont ensuite été comparées aux dernières images obtenues par RM pour établir des corrélations entre l’imagerie et la pathologie.

Résultats:

L’IRM a mis en évidence les tumeurs dans le cervelet, les lobes frontaux et à la base du crâne chez tous les modèles de souris. La détection des tumeurs intracrâniennes était rehaussée par l’administration préalable de gadolinium et la limite de résolution des tumeurs cérébrales chez les souris était de 1-2 mm3. Des images séquentielles obtenues à différents intervalles ont montré une croissance progressive de la tumeur chez tous les animaux. Les images de la taille et de la localisation de la tumeur obtenues par RM correspondaient exactement aux résultats de l’analyse histopathologique.

Conclusion:

Il est possible d’utiliser un système de RM 1.5 T utilisé en clinique et une sonde spécialement conçue pour l’IRM de tumeurs cérébrales dans différents compartiments intracrâniens chez la souris. Avec une bonne résolution, on peut détecter des tumeurs de 1 ou 2 mm3. On peut suivre des souris porteuses de tumeurs cérébrales naissantes par l’IRM en série. Cette méthode permet de suivre la croissance tumorale de façon non effractive et de tester de nouveaux traitements sans devoir sacrifier les souris.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 2003

References

1. Holland, EC, Celestino, J, Dai, C, et al. Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nature Genetics 2000;25:5557.CrossRefGoogle ScholarPubMed
2. Koutcher, JA, Hu, X, Xu, S, et al. MRI of mouse models for gliomas shows similarities to humans and can be used to identify mice for preclinical trials. Neoplasia 2002;4:480485.Google Scholar
3. Ding, H, Roncari, L, Shannon, P, et al. Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res 2001;61:38263836.Google Scholar
4. Bockhorst, K, Els, T, Kohno, K, Hoehn-Berlage, M. Localization of experimental brain tumors in MRI by gadolinium porphyrin. Acta Neurochir Suppl (Wien) 1994;60:347349.Google Scholar
5. Cortes, ML, de Felipe, P, Martin, V, et al. Successful use of a plant gene in the treatment of cancer in vivo . Gene Ther 1998;5:14991507.Google Scholar
6. DiMeco, F, Rhines, LD, Hanes, J, et al. Paracrine delivery of IL-12 against intracranial 9L gliosarcoma in rats. J Neurosurg 2000;92:419427.Google Scholar
7. Gill, M, Miller, SL, Evans, D, et al. Magnetic resonance imaging and spectroscopy of small ring-enhancing lesions using a rat glioma model. Invest Radiol 1994;29:301306.Google Scholar
8. Kenney, J, Schmiedl, U, Maravilla, K, et al. Measurement of blood-brain barrier permeability in a tumor model using magnetic resonance imaging with gadolinium-DTPA. Magn Reson Med 1992;27:6875.Google Scholar
9. Kim, B, Chenevert, TL, Ross, BD. Growth kinetics and treatment response of the intracerebral rat 9L brain tumor model: a quantitative in vivo study using magnetic resonance imaging. Clin Cancer Res 1995;1:643650.Google Scholar
10. Massicotte, EM, Buist, R, Del Bigio, MR. Altered diffusion and perfusion in hydrocephalic rat brain: a magnetic resonance imaging analysis. J Neurosurg 2000;92:442447.Google Scholar
11. Remsen, LG, McCormick, CI, Roman-Goldstein, S, et al. MR of carcinoma-specific monoclonal antibody conjugated to monocrystalline iron oxide nanoparticles: the potential for noninvasive diagnosis. AJNR Am J Neuroradiol 1996;17:411418.Google Scholar
12. Ross, BD, Zhao, YJ, Neal, ER, et al. Contributions of cell kill and posttreatment tumor growth rates to the repopulation of intracerebral 9L tumors after chemotherapy: an MRI study. Proc Natl Acad Sci USA 1998;95:70127017.Google Scholar
13. Runge, VM, Jacobson, S, Wood, ML, et al. MR imaging of rat brain glioma: Gd-DTPA versus Gd-DOTA. Radiology 1988;166:835838.Google Scholar
14. Smith, DA, Clarke, LP, Fiedler, JA, et al. Use of a clinical MR scanner for imaging the rat brain. Brain Res Bull 1993;31:115120.Google Scholar
15. Wilkins, DE, Raaphorst, GP, Saunders, JK, et al. Correlation between Gd-enhanced MR imaging and histopathology in treated and untreated 9L rat brain tumors. Magn Reson Imaging 1995;13:8996.Google Scholar
16. Wilmes, LJ, Hoehn-Berlage, M, Els, T, et al. In vivo relaxometry of three brain tumors in the rat: effect of Mn-TPPS, a tumor-selective contrast agent. J Magn Reson Imaging 1993;3:512.Google Scholar
17. Wolf, RF, Lam, KH, Mooyaart, EL, et al. Magnetic resonance imaging using a clinical whole body system: an introduction to a useful technique in small animal experiments. Lab Anim 1992;26:222227.CrossRefGoogle ScholarPubMed
18. Blankenberg, F, Conley, FK, Sayre, J, Enzmann, D. MR imaging in an experimental model of brain tumor immunotherapy. AJNR Am J Neuroradiol 1991;12:543548.Google Scholar
19. Randazzo, BP, Kesari, S, Gesser, RM, et al. Treatment of experimental intracranial murine melanoma with a neuroattenuated herpes simplex virus 1 mutant. Virology 1995;211:94101.Google Scholar
20. Rye, PD, Norum, L, Olsen, DR, et al. Brain metastasis model in athymic nude mice using a novel MUC1-secreting human breast-cancer cell line, MA11. Int J Cancer 1996;68:682687.Google Scholar
21. Cha, S, Johnson, G, Wadghiri, YZ, et al. Dynamic, contrast-enhanced perfusion MRI in mouse gliomas: correlation with histopathology. Magn Reson Med 2003;49:848855.Google Scholar
22. Benedetti, S, Pirola, B, Pollo, B, et al. Gene therapy of experimental brain tumors using neural progenitor cells. Nat Med 2000;6:447450.Google Scholar
23. Xu, S, Gade, TPF, Matei, C, et al. In vivo multiple-mouse imaging at 1.5 T. Magn Reson Imaging 2003;49:551557.Google Scholar
24. Goldbrunner, RH, Wagner, S, Roosen, K, Tonn, JC. Models for assessment of angiogenesis in gliomas. J Neurooncol 2000;50:5362.Google Scholar
25. Rajan, SS, Rosa, L, Francisco, J, et al. MRI characterization of 9L-glioma in rat brain at 4.7 Tesla. Magn Reson Imaging 1990;8:185190.Google Scholar
26. Raila, FA, Bowles, AP Jr, Perkins, E, Terrell, A. Sequential imaging and volumetric analysis of an intracerebral C6 glioma by means of a clinical MRI system. J Neurooncol 1999;43:1117.Google Scholar
27. Moore, A, Marecos, E, Bogdanov, A Jr, Weissleder, R. Tumoral distribution of long-circulating dextran-coated iron oxide nanoparticles in a rodent model. Radiology 2000;214:568574.Google Scholar
28. Lee, WH. Characterization of a newly established malignant meningioma cell line of the human brain: IOMM-Lee. Neurosurgery 1990;27:389395; discussion 396.Google Scholar
29. Yazaki, T, Manz, HJ, Rabkin, SD, Martuza, RL. Treatment of human malignant meningiomas by G207, a replication-competent multimutated herpes simplex virus 1. Cancer Res 1995;55:47524756.Google Scholar
30. Messier, C, Emond, S, Ethier, K. New techniques in stereotaxic surgery and anesthesia in the mouse. Pharmacol Biochem Behav 1999;63:313318.CrossRefGoogle ScholarPubMed
31. Chiang, C, Litingtung, Y, Lee, E, et al. Cyclopia and defective axial patterning in mice lacking Sonic hedgehog gene function. Nature 1996;383:407413.Google Scholar
32. Zhang, J, van Zijl, PC, Mori, S. Three-dimensional diffusion tensor magnetic resonance microimaging of adult mouse brain and hippocampus. Neuroimage 2002;15:892901.Google Scholar
33. Schwarcz, A, Natt, O, Watanabe, T, et al. Localized proton MRS of cerebral metabolite profiles in different mouse strains. Magn Reson Med 2003;49:822827.Google Scholar
34. Hoehn, M, Nicolay, K, Franke, C, van der Sanden, B. Application of magnetic resonance to animal models of cerebral ischemia. J Magn Reson Imaging 2001;14:491509.CrossRefGoogle ScholarPubMed
35. Preul, MC, Caramanos, Z, Collins, DL, et al. Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med 1996;2:323325.Google Scholar
36. Preul, MC, Caramanos, Z, Villemure, JG, et al. Using proton magnetic resonance spectroscopic imaging to predict in vivo the response of recurrent malignant gliomas to tamoxifen chemotherapy. Neurosurgery 2000;46:306318.CrossRefGoogle ScholarPubMed
37. McCutcheon, IE, Friend, KE, Gerdes, TM, et al. Intracranial injection of human meningioma cells in athymic mice: an orthotopic model for meningioma growth. J Neurosurg 2000;92:306314.CrossRefGoogle ScholarPubMed
38. Kalamarides, M, Niwa-Kawakita, M, Leblois, H, et al. Nf2 gene inactivation in arachnoidal cells is rate-limiting for meningioma development in the mouse. Genes Dev 2002;16:10601065.Google Scholar