Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-23T20:52:18.307Z Has data issue: false hasContentIssue false

IL2RA Allele Increases Risk of Neuromyelitis Optica in Southern Han Chinese

Published online by Cambridge University Press:  23 September 2014

Yongqiang Dai
Affiliation:
Department of Neurology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
Jin Li
Affiliation:
Department of Neurology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
Xiaonan Zhong
Affiliation:
Department of Neurology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
Yuge Wang
Affiliation:
Department of Neurology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
Wei Qiu
Affiliation:
Department of Neurology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
Zhengqi Lu
Affiliation:
Department of Neurology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
Aimin Wu
Affiliation:
Department of Neurology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
Jian Bao
Affiliation:
Department of Neurology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
Fuhua Peng
Affiliation:
Department of Neurology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
Xueqiang Hu*
Affiliation:
Department of Neurology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province, China
*
Department of Neurology, the Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong Province 510630, China. Email: [email protected].
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Neuromyelitis optica (NMO) and multiple sclerosis (MS) are chronic neuro-inflammatory diseases believed to arise from complex interactions between environmental and genetic factors. Recently, single nucleotide polymorphisms (SNPs) in interleukin (IL)-2 and -7 receptor alpha genes have been identified as novel susceptibility alleles for MS in genome-wide association studies. However, similar research on NMO is limited. We aimed to investigate the association of IL2RA SNPs rs2104286 and rs12722489 and IL7RA SNP rs6897932 with Southern Han Chinese NMO and MS patients.

Methods:

Frequencies of the three SNPs were examined in Southern Han Chinese mS cases (n=78), NMS cases (n=67) and controls (n=133) using sequencing-based typing.

Results:

The rs2104286G frequency in the IL2RA gene was significantly higher in NMO patients than in controls (puncorr=0.013, pcorr=0.026, OR:1.942, 95%CI:1.146-3.291).

Conclusion:

The rs2104286 G allele in IL2RA is present at higher frequencies in NMO patients than in healthy controls within a Southern Han Chinese population.

Résumé

RÉSUMÉ Contexte:

La neuromyélite optique (NMO) et la sclérose en plaques (SP) sont des maladies neuroinflammatoires chroniques qu'on pense être dues à des interactions complexes entre des facteurs environnementaux et génétiques. Des polymorphismes d'un seul nucléotide (SNP) dans les gènes du récepteur alpha de l'interleukine 2 et de l'interleukine 7 ont été identifiés récemment par des études d'association pangénomiques comme étant des allèles de susceptibilité à la SP. Cependant, peu d'études semblables ont été faites sur la NMO. Le but de notre étude était d'examiner l'association des SNP rs2104286 et rs12722489 de IL2RA et le SNP rs6897932 de IL7RA chez des patients Chinois Han du sud atteints de NMO et de SP.

Méthode:

Nous avons utilisé des données administratives provinciales de réclamation pour identifier les individus atteints de la SP. Nous avons validé les définitions administratives de cas au moyen de la base de données cliniques de la seule clinique de SP de cette province. La concordance entre les sources de données a été évaluée au moyen du test de concordance Kappa. Nous avons ensuite appliqué ces définitions pour estimer l'incidence et la prévalence de la SP de 1990 à 2010.

Résultats:

La fréquence de rs2104286G du gène IL2RA est significativement plus élevée chez les patients atteints de NMO que chez les témoins (p sans ajustement = 0,013, p avec ajustement = 0,026 ; RC : 1,942 ; IC à 95% : 1,146 à 3,291)

Conclusion:

La présence de l'allèle rs2104286G du gène IL2RA est plus fréquente chez les patients atteints de NMO que chez des témoins sains de la population chinoise Han du sud.

Type
Original Article
Copyright
Copyright © The Canadian Journal of Neurological 2013

References

1. Wang, H, Zhong, X, Wang, K, et al. Interleukin 17 gene polymorphism is associated with anti-aquaporin 4 antibody-positive neuromyelitis optica in the Southern Han Chinese–a case control study. J Neurol Sci. 2012;314(1–2):268.Google Scholar
2. Wang, H, Dai, Y, Qiu, W, et al. HLA-DPB1 0501 is associated with susceptibility to anti-aquaporin-4 antibodies positive neuromyelitis optica in southern Han Chinese. J Neuroimmunol. 2011;233(1–2):1814.Google Scholar
3. Haines, JL, Terwedow, HA, Burgess, K, et al. Linkage of the MHC to familial multiple sclerosis suggests genetic hetero- geneity. The multiple sclerosis genetics group. Hum Mol Genet. 1998;7:122934.Google Scholar
4. Ramagopalan, SV, Ebers, GC. Genes for multiple sclerosis. Lancet. 2008;371:2835.Google Scholar
5. Wingerchuk, DM. Diagnosis and treatment of neuromyelitis optica. Neurologist. 2007;13:211.Google Scholar
6. Yamasaki, K, Horiuchi, I, Minohara, M, et al. HLA-DPB1 * 0501 associated optico-spinal multiple sclerosis: clinical, neuroimaging and immunogenetic studies. Brain. 1999;122:168996.CrossRefGoogle Scholar
7. Matsushita, T, Matsuoka, T, Isobe, N, et al. Association of the HLA-DPB1 * 0501 allele with antiaquaporin-4 antibody positivity in Japanese patients with idiopathic central nervous system demyelinating disorders. Tissue Antigens. 2009;73:1716.Google Scholar
8. Li, K, Zhao, B, Dai, D, et al. A functional p.82G>S polymorphism in the RAGE gene is associated with multiple sclerosis in the Chinese population. Mult Scler. 2011;17:91421.Google Scholar
9. Fukazawa, T, Kikuchi, S, Miyagishi, R, et al. CTLA-4 gene polymorphism is not associated with conventional multiple sclerosis in Japanese. J Neuroimmunol. 2005;159:2259.Google Scholar
10. Osoegawa, M, Niino, M, Ochi, H, et al. Platelet-activating factor acetylhydrolase gene polymorphism and its activity in Japanese patients with multiple sclerosis. J Neuroimmunol. 2004;150:1506.CrossRefGoogle ScholarPubMed
11. Niino, M, Kikuchi, S, Fukazawa, T, Yabe, I, Sasaki, H, Tashiro, K. Genetic polymorphisms of IL-1beta and IL-1 receptor antagonist in association with multiple sclerosis in Japanese patients. J Neuroimmunol. 2001;118:2959.Google Scholar
12. Rasmussen, HB, Kelly, MA, Francis, DA, Clausen, J. CTLA4 in multiple sclerosis. Lack of genetic association in a european Caucasian population but evidence of interaction with HLA-DR2 among Shanghai Chinese. J Neurol Sci. 2001;184:1437.Google ScholarPubMed
13. Barcellos, LF, Thomson, G, Carrington, M, et al. Chromosome 19 single-locus and multilocus haplotype associations with multiple sclerosis. Evidence of a new susceptibility locus in Caucasian and Chinese patients. JAMA. 1997;278:125661.Google ScholarPubMed
14. Hafler, DA, Compston, A, Sawcer, S, et al. Risk alleles for multiple sclerosis identified by a genomewide study. N Engl J Med. 2007 Aug 30;357(9):85162.Google Scholar
15. Gregory, SG, Schmidt, S, Seth, P, et al; Multiple Sclerosis Genetics Group. Interleukin 7 receptor alpha chain (IL7R) shows allelic and functional association with multiple sclerosis. Nat Genet. 2007;39(9):108391.CrossRefGoogle ScholarPubMed
16. Weber, F, Fontaine, B, Cournu-Rebeix, I, et al. IL2RA and IL7RA genes confer susceptibility for multiple sclerosis in two independent European populations. Genes Immun. 2008 Apr;9 (3):25963.Google Scholar
17. Seddon, B, Tomlinson, P, Zamoyska, R. Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nat Immunol. 2003 Jul;4(7):6806.Google Scholar
18. Malek, TR, Bayer, AL. Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol. 2004 Sep;4(9):66574.Google Scholar
19. Qu, HQ, Bradfield, JP, Bélisle, A, Grant, SF, Hakonarson, H, Polychronakos, C. The type I diabetes association of the IL2RA locus. Genes Immun. 2009;10 Suppl 1:S428.CrossRefGoogle ScholarPubMed
20. Brand, OJ, Lowe, CE, Heward, JM, et al. Association of the interleukin-2 receptor alpha (IL-2Ralpha)/CD25 gene region with Graves' disease using a multilocus test and tag SNPs. Clin Endocrinol (Oxf). 2007;66(4):50812.Google Scholar
21. Kurreeman, FA, Daha, NA, Chang, M, et al. Association of IL2RA and IL2RB with rheumatoid arthritis: a replication study in a Dutch population. Ann Rheum Dis. 2009;68(11):178990.Google Scholar
22. Santiago, JL, Alizadeh, BZ, Martínez, A, et al. Study of the association between the CAPSL-IL7R locus and type 1 diabetes. Diabetologia. 2008;51(9):16538.Google Scholar
23. Polman, CH, Reingold, SC, Edan, G, et al. Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol. 2005;58:8406.CrossRefGoogle Scholar
24. Wingerchuk, DM, Lennon, VA, Pittock, SJ, Lucchinetti, CF, Weinshenker, BG. Revised diagnostic criteria for neuromyelitis optica. Neurology. 2006;66:14851459.CrossRefGoogle ScholarPubMed
25. Fang, L, Isobe, N, Yoshimura, S, et al. Interleukin-7 receptor alpha gene polymorphism influences multiple sclerosis risk in Asians. Neurology. 2011;76(24):21257.CrossRefGoogle ScholarPubMed
26. Pandit, L, Ban, M, Sawcer, S, et al. Evaluation of the established non-MHC multiple sclerosis loci in an Indian population. Mult Scler. 2011;17(2):13943.Google Scholar
27. Barton, A, Woolmore, JA, Ward, D, et al. Association of protein kinase C alpha (PRKCA) gene with multiple sclerosis in a UK population. Brain. 2004;127:171722.CrossRefGoogle Scholar