Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T05:55:31.692Z Has data issue: false hasContentIssue false

Identification of the Temporal Components of Seizure Onset in the Scalp EEG

Published online by Cambridge University Press:  02 December 2014

Nora S. O'Neill
Affiliation:
Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
Zoltan J. Koles
Affiliation:
Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
Manouchehr Javidan
Affiliation:
Department of Neurology, University of Alberta Hospital Edmonton, Alberta, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

The identification of the earliest indication of rhythmical oscillations and paroxysmal events associated with an epileptic seizure is paramount in identifying the location of the seizure onset in the scalp EEG. In this work, data-dependent filters are designed that can help reveal obscure activity at the onset of seizures in problematic EEGs.

Methods:

Data-dependent filters were designed using temporal patterns common to selected segments from pre-ictal and ictal portions of the scalp EEG. Temporal patterns that accounted for more variance in the ictal segment than in the pre-ictal segment of the scalp EEG were used to form the filters.

Results:

Application of the filters to the scalp EEG revealed temporal components in the seizure onset in the scalp recording that were not obvious in the unfiltered EEG. Examination of the filtered EEG enabled the onset of the seizure to be recognized earlier in the recording. The utility of the filters was confirmed qualitatively by comparing the scalp recording to the intracranial recording and quantitatively by calculating correlation coefficients between the scalp and intracranial recordings before and after filtering.

Conclusion:

The data-dependent approach to EEG filter design allows automatic detection of the basic frequencies present in the seizure onset. This approach is more effective than narrow band-pass filtering for eliminating artifactual and other interference that can obscure the onset of a seizure. Therefore, temporal-pattern filtering facilitates the identification of seizure onsets in challenging scalp EEGs.

Résumé:

RÉSUMÉ:Introduction:

L'identification, à l'ÉEG de surface, des signes les plus précoces d'oscillations rythmiques et d'événements paroxystiques associés à une crise épileptique est très importante pour la localisation du site d'origine de la crise. Dans cette étude, des filtres dépendants des données ont été conçus pour aider à mettre en évidence une activité masquée au début des crises dans les ÉEG problématiques.

Méthodes:

Des filtres ont été élaborés en utilisant des motifs temporaux communs à des segments sélectionnés de portions pré-ictales et ictales d'ÉEGs de surface. Des motifs temporaux qui expliquaient une plus grande part de la variance dans le segment ictal que dans le segment pré-ictal de l'ÉEG de surface ont été utilisés pour élaborer les filtres.

Résultats:

L'application des filtres à l'ÉEG de surface a mis en évidence des composantes temporales du début de la crise, qui n'étaient pas évidentes à l'enregistrement ÉEG non filtré. L'examen de l'ÉEG filtré a permis de reconnaître plus tôt le début des crises sur l'enregistrement. L'utilité des filtres a été confirmée qualitativement en comparant l'enregistrement de surface à l'enregistrement intracrânien et quantitativement en calculant les coefficients de corrélation entre les enregistrements de surface et intracrâniens avec et sans filtre.

Conclusion:

L'approche à l'élaboration de filtres ÉEG selon les données permet la détection automatique des fréquences de base présentes au début des crises. Cette approche est plus efficace que le filtrage passe-bande étroit pour éliminer une interférence due à un artefactuelle ou autre qui peut masquer le début d'une crise. Ce type de filtre facilite l'identification du début des crises dans les enregistrements ÉEGs problématiques.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 2001

References

1. Pacia, S, Ebersole, JS. Intracranial EEG substrates of scalp ictal patterns from temporal lobe foci. Epilepsia 1997;38:642654.Google Scholar
2. Javidan, M, Katz, A, Tran, T, et al. Frequency characteristics ofneocortical and hippocampal onset seizures. Epilepsia 1992a;33:S3–58.Google Scholar
3. Javidan, M, Katz, A, Pacia, S, et al. Onset and propagationfrequencies in temporal lobe seizures. Epilepsia 1992b;33:S3–59.Google Scholar
4. Spencer, SS, Guimaraes, P, Katz, A, Kim, J, Spencer, D. Morphologicalpatterns of seizures recorded intracranially. Epilepsia 1992;33:537545.Google Scholar
5. Ebersole, JS, Pacia, SV. Temporal neocortical epilepsy syndrome:scalp EEG identification. Epilepsia 1993;34: S7–112.Google Scholar
6. Ebersole, JS, Pacia, SV. Localization of temporal lobe foci by ictalEEG patterns. Epilepsia 1996;37:386399.Google Scholar
7. Pacia, S, Ebersole, JS. The classification of temporal lobe seizures byscalp EEG. Epilepsia 1992;33: S3–58.Google Scholar
8. Pacia, S, Ebersole, JS. Temporal neocortical epilepsy syndrome:intracranial EEG identification. Epilepsia 1993;34: S6–26.Google Scholar
9. Spanedda, F, Cendes, F, Gotman, J. Relations between EEG seizuremorphology, interhemispheric spread, and mesial temporal atrophy in bitemporal epilepsy. Epilepsia 1997;38:13001314.CrossRefGoogle ScholarPubMed
10. Assaf, BA, Ebersole, JS. Visual and quantitative ictal EEG predictorsof outcome after temporal lobectomy. Epilepsia 1999; 40: 5261.CrossRefGoogle Scholar
11. Mizuno-Matsumoto, Y, Okazaki, K, Kato, A, et al. Visualization ofepileptogenic phenomena using cross-correlation analysis: localization of epileptic foci and propagation of epileptiformdischarges. IEEE Trans Biomed Eng 1999;BME-46:271279.Google Scholar
12. Lopes Da Silva, FH, Van Hulten, K, Lommen, JG, et al. Automaticdetection and localization of epileptic foci. Electroencephalogr Clin Neurophysiol 1977;43:113.Google Scholar
13. Pfurtscheller, G, Fischer, G. A new approach to spike detection usinga combination of inverse and matched filter techniques. Electroencephalogr Clin Neurophysiol 1978;44:243247.Google Scholar
14. Barlow, JS. EEG transient detection by matched inverse digitalfiltering. Electroencephalogr Clin Neurophysiol 1980;48:246248.CrossRefGoogle Scholar
15. Barlow, JS. Analysis of EEG changes with carotid clamping byselective analog filtering, matched inverse digital filtering and automatic adaptive segmentation: a comparative study. Electroencephalogr Clin Neurophysiol 1984;58:193204.Google Scholar
16. Hjorth, B, Rodin, E. Extraction of deep components from scalp EEG. Brain Topogr 1988a;1:6569.CrossRefGoogle ScholarPubMed
17. Hjorth, B, Rodin, E. An eigenfunction approach to the inverseproblem of EEG. Brain Topogr 1988b;1: 7986.Google Scholar
18. Koles, ZJ. The quantitative extraction and topographic mapping ofthe abnormal components in the clinical EEG. Electroencephalogr Clin Neurophysiol 1991;79:440447.CrossRefGoogle Scholar
19. Liu, A, Hahn, JS, Heldt, GP, Coen, RW. Detection of neonatal seizuresthrough computerized EEG analysis. Electroencephalogr ClinNeurophysiol 1992;82:3037.Google Scholar
20. O’Neill, NS, Javidan, M, Koles, ZJ. Localization of seizure onset inthe EEG. Proceedings of the 24th meeting of the Canadian Medical and Biological Engineering Society 1998;1415.Google Scholar
21. O’Neill, NS. Temporal and spatial pattern filtering of the EEG. M.ScThesis, University of Alberta, Edmonton, Canada 1998.Google Scholar
22. Gotman, J. Automatic detection of seizures and spikes. J ClinNeurophysiol 1999;16:130140.Google Scholar
23. Osorio, I, Frei, MG, Wilkinson, SB. Real-time automated detectionand quantitative analysis of seizures and short-term prediction of clinical onset. Epilepsia 1998;39:615627.Google Scholar
24. Mosher, JC, Lewis, PS, Leachy, RM. Multiple dipole modelling andlocalization from spatio-temporal MEG data. IEEE Trans Biomed Eng 1992; BME–39:541557.Google Scholar
25. Pascual-Marqui, RD, Michel, CM, Lehmann, D. Low resolutionelectromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 1994;18:4965.Google Scholar
26. Franaszczuk, PJ, Bergey, GK, Durka, PJ, Eisenberg, HM. Time-frequency analysis using the matching pursuit algorithm applied to seizures originating from the mesial temporal lobe. Electroencephalogr Clin Neurophysiol 1998; 106: 513521.Google Scholar
27. Qu, H, Gotman, J. A patient specific algorithm for the detection ofseizure onset in long-term EEG monitoring: possible use as a warning device. IEEE Trans Biomed Eng 1997;BME-44:115122.Google Scholar
28. Fukunaga, K. Statistical pattern classification. In: Young, T,. Fu, KS. eds. Handbook of Pattern Recognition and Image Processing. Academic Press, 1986.Google Scholar