Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-24T06:30:20.190Z Has data issue: false hasContentIssue false

The History and Pharmacology of Dopamine Agonists

Published online by Cambridge University Press:  18 September 2015

X. Lataste*
Affiliation:
Clinical Research Department, Sandoz Ltd., Basle, Switzerland and Experimental Medicine Unit, Bordeaux University, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The recognition of the dopaminergic properties of some ergot derivatives has initiated new therapeutical approaches in endocrinology as well as in neurology. The pharmacological characterization of the different ergot derivatives during the last decade has largely improved our understanding of central dopaminergic systems. Their development has yielded valuable information on the pharmacology of dopamine receptors involved in the regulatory mechanisms of prolactin secretion and in striatal functions.

The clinical application of such new neurobiological concepts has underlined the therapeutical interest of such compounds either in the control of prolactin-dependent endocrine disorders or in the treatment of parkinsonism. Owing to their pharmacological profiles, dopaminergic agonists represent a valuable clinical option especially in the management of Parkinson’s disease in view of the problems arising from chronic L-Dopa treatment.

Type
1. Neurotransmitters and the Pharmacology of the Basal Ganglia
Copyright
Copyright © Canadian Neurological Sciences Federation 1984

References

Barbeau, A (1960) Preliminary observation on abnormal catecholamine metabolism in basal ganglia disease. Neurology 10, 5: 446451.CrossRefGoogle Scholar
Berde, B, Schild, HO (Editors) (1978) Ergot alkaloids and related compounds. Springer Verlag, Berlin.Google Scholar
Burns, RS, Chiveh, CC, Markey, SP, Ebert, MM, Jacobowitz, DM, Kopin, IJ (1983) A primate model of parkinsonism: selective destruction of dopaminergic neurons in the pars compacta of the substantia nigra by l-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Proc. Natl. Acad. Sci. USA 80: 45364550.CrossRefGoogle Scholar
Calne, DB, Teychenne, PF, Claveria, LE, Eastman, R, Greenacre, JK, Petrie, A (1974a) Bromocriptine in parkinsonism. Br. Med. J. 4: 442444.CrossRefGoogle ScholarPubMed
Calne, DB, Teychenne, PF, Leigh, PN, Bamji, AN, Greenacre, JK (1947b) Treatment of parkinsonism with bromocriptine. Lancet 2: 13551356.Google Scholar
Calne, DB, Williams, AC, Nutt, JG, Neophytides, A, Eisler, T, Teychenne, PF (1978) Ergot derivatives for parkinsonism. Med. J. Austr. 2, 3 (Suppl) 2536.CrossRefGoogle ScholarPubMed
Calne, DB (1983) Ergot derivatives and extrapyramidal diseaseIn: Lisuride and other dopamisne agonists. Calne, DBet al. (Eds.) pp. 357361, Raven Press, New-York.Google Scholar
Castaigne, P, Laplane, D, Dordain, G (1971) Clinical experimentation with apomorphine in Parkinson’s disease. Res. Commun. Chem. Pathol. Pharmacol. 2: 154158.Google ScholarPubMed
Charcot, JM (1892) Leçons sur les maladies du système nerveux faites à la Salpêtrière. Recueillies et publiées par Bourneville A. Paris, pp. 155188. Delahaye et Lecrosnier.Google Scholar
Calne, DB, Larsen, TA (1983) Potential therapeutic use of dopamine receptor agonist and antagonistIn: Dopamine Receptors – ACS Symposium Series 244, Kaiser, C and Kebabian, JW (Eds.) Amer. Chem. Soc, Washington.Google Scholar
Clark, BJ, Flueckiger, E, Loew, DM, Vigouret, JM (1978) How does bromocriptine work? Triangle 17, 1: 2131.Google Scholar
Closse, A, Frick, W, Hauser, D, Sauter, A (1980) Characterization of 3H-bromocriptine binding to calf caudate membranes. In: Psycho-pharmacology and biochemistry of neurotransmitter receptors. Yamamura, HIet al., (Eds.) Elsevier, North Holland, Amsterdam pp. 463474.Google Scholar
Corrodi, H, Fuxe, K, Hokfelt, T, Lidbrink, P, Ungerstedt, U (1973) Effect of ergot drugs on central catecholamine neurons: Evidence for a stimulation of central dopamine neurons. J. Pharm. Pharmacol., 25: 409411.CrossRefGoogle ScholarPubMed
Cotzias, GC, Papavasiliou, PS, Fehling, C, Kaufman, B, Mena, I (1970) Similarities between neurological effects of L-dopa and apomorphine. N. Engl. J. Med. 282:3133.CrossRefGoogle ScholarPubMed
Cotzias, GC, Papavasiliou, PS, Tolosa, ES, Mendez, JS, Bell-Mindura, M (1976) Treatment of Parkinson’s disease with apomorphines. Possible role of growth hormone. N. Engl. J. Med. 294: 567572.CrossRefGoogle ScholarPubMed
David, GC, William, AC, Markey, SP, Ebert, MH, Caine, ED, Reichert, CM, Kopin, IJ (1979) Psychiatry Res. I: 249254.Google Scholar
Ehringer, H, Hornykiewiez, O (1960) Verteilung von Noradrenalin und Dopamin (3-Hydroxytyramin) in dem Menschen und ihr Verhalten bei Erkrankungen des Extra-pyramidalen Systems. Klin. Wschr. 38: 12361239.CrossRefGoogle Scholar
Enz, A (1981) Biphasic influence of an 8-a-amino ergoline, CU 32–085, on striatal dopamine synthesis and turnover in vivo in the rat. Life Sci. 29: 22272234.CrossRefGoogle ScholarPubMed
Enz, A, Frick, A, Closse, A, Nordmann, R (1982) Dopaminergic properties of CU 32–085 and its 1, 20-N, N-bidemethylated metabolite. In: Abstr. CINP Meeting, Jerusalem, Vol. 1, p. 199.Google Scholar
Enz, A, Donatsch, P, Nordmann, R (1983) Dopaminergic properties of Mesulergine (CU 32–085) and its metabolites. J. Neural. Transm. (in press).CrossRefGoogle Scholar
Ernst, AM (1967) Mode of action of apomorphine and dexamphetamine on gnawing compulsion in rats. Psychopharmacology 10: 316323.CrossRefGoogle ScholarPubMed
Flueckiger, E (1970) The pharmacology of bromocriptineIn: Pharmacological and Clinical Aspects of Bromocriptine (Parlodel). Bayliss, IS, Turner, Pet al., (Eds.), MCS consultants, Turnbridge Wells, Kent pp. 1226.Google Scholar
Flueckiger, E, Briner, U, Buerki, HR, Marbach, P, Wagner, HR, Doepfner, W (1979) Two novel prolactin release-inhibiting 8-a-amino-ergolines. Experientia 35: 16771678.CrossRefGoogle Scholar
Flueckiger, E, Vigouret, JM (1981) Central dopamine receptors. Postgrad. Med. J. Suppl, 1, 57:5561.Google Scholar
Flueckiger, E, Markstein, R (1982) Receptor pharmacology of ergot compounds. In: Proc. Third Intern. Meeting on Human Prolactin. Tolis, G (Ed.) Raven Press, New-York (in press).Google Scholar
Flueckiger, E (1983a) Interactions of ergot compounds with dopamine receptors and endocrine functions. J. Neural. Transmission Suppl. 18: 189204.Google Scholar
Flueckiger, E, Briner, U, Enz, A, Markstein, R, Vigouret, JM (1983) Dopaminergic ergot compounds: an overviewIn: Lisuride and other dopamine agonists. Calne, DBet al., (Eds.) Raven Press, New-York pp. 19.Google Scholar
Frantz, AG, Kleinberg, DL (1970) Prolactine: evidence that it is separate from growth hormone in human blood. Science 170: 745747.CrossRefGoogle ScholarPubMed
Fuller, RW, Perry, KW (1978) Effect of lergotrile on 3, 4-dihydroxy-phenylacetic acid (DOPAC) concentration and dopamine turnover in rat brain. J. Neurol. Transm. 42: 2325.Google Scholar
Fuller, RW, Clemens, JA, Kornfeld, EC, Snoddy, HD, Smalstig, EB, Bach, NJ (1979) Effects of (8-beta)-8-(methylthio) methyl-6-propylergoline on dopaminergic function and brain dopamine turnover in rats. Life Sci. 24: 375382.CrossRefGoogle Scholar
Fuxe, K, Hokfelt, T (1970) Central monoaminergic systems and hypothalamic functionIn: The Hypothalamus. Martini, Let al., (Eds.) Academic Press, New-York, pp. 123138.Google Scholar
Fuxe, K, Fredholm, BB, Agnati, LF, Ogren, SO, Everitt, BJ, Gustafsson, JA (1978) Interaction of ergot drugs with central monoamine systems: Evidence for high potential in the treatment of mental and neurological disorders. Pharmacology 16, Suppl. 99134.CrossRefGoogle ScholarPubMed
Fuxe, K (1979) Dopamine receptor agonists in brain research and as therapeutic agents. TINS 2: 14.Google Scholar
Fuxe, K, Agnati, LF, Kohler, C, Andersson, K, Eneroth, P, Calza, L, Ogren, SO (1983) Heterogeneity of brain dopamine systems: Possible discrimination of different types of dopamine systems and receptors by ergot drugs. In: Lisuride and other dopamine agonists, Calne, DBet al., (Eds.) Raven Press, New-York, pp. 1131.Google Scholar
Geschwing, II (1972) Introduction. In: Prolactin and Cardiogenesis, Boyns, AR, Griffiths, K, (Eds.) Alpha Omega. Alpha Publishing, Cardiff pp. 13.Google Scholar
Graf, KJ, Neumann, T, Horowski, R (1976) Effect of the ergot derivative lisuride hydrogen maleate on serum prolactin concentrations in female rats. Endocrinology 98: 598605.CrossRefGoogle ScholarPubMed
Hirt, D, Lataste, X, Ringwald, E (1983) Mesulergine over one year. In First symposium on Restorative Neurology, Venice p. 33 (abstr.).Google Scholar
Hokfelt, T, Fuxe, K (1972) On the morphology and the neuroendocrine role of the hypothalamic neurons. In: Brain-Endocrine Interaction. Median Eminence: Structure and Function. Knigge, KMet al., (Eds.). Karger, Basel, pp. 181223.Google Scholar
Hwang, P, Friesen, H, Hardy, J, Wilansky, D (1971a) Biosynthesis of human growth hormone and prolactin by normal pituitary glands and pituitary adenomas. J. Clin. Endocrinol. 33: 17.CrossRefGoogle ScholarPubMed
Hwang, P, Guida, H, Friesen, HG (1971b) A radio-immunoassay for human prolactin. Proc. Natl. Acad. Sci. USA 68: 19021906.CrossRefGoogle Scholar
Johnson, AM, Loew, DM, Vigouret, JM (1976) Stimulant properties of bromocriptine, amphetamine and L-Dopa. J. Pharmacol. 56: 5968.Google ScholarPubMed
Langston, JW, Ballard, P, Tetrud, JW, Irwin, I (1983) Chronic parkinsonism in humans due to a product of meperidine analog synthesis. Science 219:979980.CrossRefGoogle ScholarPubMed
Lataste, X (1981) Bromocriptine et maladie de Parkinson: revue clinique et prospective. In: Colloque sur la bromocriptine. Sandoz Edition, Paris, pp. 277293.Google Scholar
Lees, AJ, Haddad, S, Shaw, KM, Kohout, LJ, Stern, GM (1978) Bromocriptine in the Parkinson’s disease – a long-term study. Arch. Neurol. 35: 503507.CrossRefGoogle ScholarPubMed
Lewis, UJ, Singh, RNP, Sinha, YN, Van Der Laan, WP (1971) Electrophoresis evidence for human prolactin. J. Clin. Endocrinol. 33: 153156.CrossRefGoogle ScholarPubMed
Lieberman, A, Kupersmith, M, Estey, E, Goldstein, M (1976) Modification on the on-off effect with bromocriptine and lergotrile. N. Engl. J. Med. 295: 14001401.CrossRefGoogle Scholar
Loewenstein, JE, Mariz, IK, Peake, GT, Daughaday, WH (1971) Prolactin bioassay by induction of N-acetyllactosamine synthetase in mouse mammary explants. J. Clin. Endocrinol. 33: 217224.CrossRefGoogle Scholar
Loveless, AR (1967) Claviceps fusiformis sp. nov., the causal agent of an agalactia of sows. Transm. Br. Mycol. Soc. 50: 1518.Google Scholar
MacLeod, RM, Lehmeyer, JE (1974) Studies on the mechanism of the dopamine mediated inhibition of prolactin secretion. Endocrinology 94: 10771085.CrossRefGoogle ScholarPubMed
Mantle, PG (1968) Studies on Sphacelia Sorghi Mc. Rae, an ergot of Sorghum vulgare Pers. Ann. Appl. Biol. 62: 443449.CrossRefGoogle Scholar
Mantle, PG (1969) Interruption of early pregnancy in mice by oral administration of agroclavine and sclerotia of Claviceps fusiformis (Loveless). J. Reprod. Fertil. 18: 8188.CrossRefGoogle ScholarPubMed
Markstein, R (1981) Neurochemical effects of some ergot derivatives: a basis for their antiparkinsonian actions. J. Neurol. Transm. 51: 3959.CrossRefGoogle Scholar
Papavasiliou, PS, Cotzias, GC, Rosal, VLP, Miller, ST (1978) Treatment of parkinsonism with n-propyl norapomorphine and levodopa (with or without carbidopa). Arch. Neurol. (Chicago), 35: 787794.CrossRefGoogle ScholarPubMed
Parkinson, J (1817) Essay on the shaking palsy. Willingham and Rowland, London.Google Scholar
Pasteels, JL (1973) Introduction. In: Human Prolactin, Pasteels, JL and Robyn, C (Eds.) Excerpta Medica. Amsterdam pp. xixiii.Google Scholar
Rascol, A, Montastruc, JL, Guiraud-Chaumeil, B, Clanet, M (1982) La bromocriptine comme premier traitement de la maladie de Parkinson – Résultats à long terme. Rev. Neurol. (Paris) 138: 367385.Google Scholar
Ringwald, E, Hirt, D, Markstein, R, Vigouret, JM (1982) Dopaminrezeptoren-Stimulatoren in der Behandlung der Parkinson-krankheit. Nervenarzt 53:6771.Google Scholar
Rinne, UK (1983) Dopamine agonists in the treatment of Parkinson’s diseaseIn: Advances in Neurology. Vol. 37. Experimental Therapeutics of Movement disorders. Fahn, Set al., (Eds.) Raven Press, New-York pp. 141150.Google Scholar
Schneider, HR, Stadler, PA, Stutz, P, Troxler, F (1977) Synthese und Eigenschaften vor Bromocriptin. Experientia. 33: 14121413.CrossRefGoogle Scholar
Scholtysik, G, Muller-Schweinitzer, (1980) Evidence of presynaptic dopamine receptors in sympathetic heart nerves of cats. In: Modulation of Neurochemical Transmission Vizi, ES (Ed.), London, Pergamon Press, Budapest, Akadémiai Kiado, p. 189.Google Scholar
Schwab, RS (1951) Apomorphine in Parkinson’s disease. Trans. Am. Neurol. Assoc. 76: 251253.Google Scholar
Shelesnyak, (1954) Ergotoxine inhibition of deciduoma formation and its reversal by progesterone. Am. J. Physiol. 179: 301304.CrossRefGoogle ScholarPubMed
Shelesnyak, MC (1958) Maintenance of gestation in ergotoxine-treated pregnant rats by exogenous prolactin. Acta Endocr. (Copenh) 27: 99109.Google ScholarPubMed
Shone, DK, Philip, JR, Christie, GJ (1959) Agalactia of sows caused by feeding the ergot of the bulrush millet Pennisetum typhoides. Vet. Rec. 71: 129132.Google Scholar
Thorner, MO, Flueckiger, E, Calne, DB (1980) Bromocriptine. A Clinical and Pharmacological Review. Raven Press, New-York.Google Scholar
Tran, MA, Montastruc, JL, Montastruc, P (1983) Bases pharmacologiques de l’utilisation thérapeutique des alcaloides de l’ergot de Seigle. Presse Med. 12: 517520.Google Scholar
Turkington, RW (1971) Measurements of prolactin activity in human serum by induction of specific milk proteins in mammary gland in vitro. J. Clin. Endocrinol. 33: 210216.CrossRefGoogle ScholarPubMed
Ungerstedt, U (1971) Postsynaptic supersensitivity after 6-hydroxy-dopamine induced degeneration of the nigra-striatal dopamine system. Acta Physiol. Scand. 367: 6993.CrossRefGoogle Scholar
Vigouret, JM, Burki, HR, Jaton, AL, Zuger, PE, Loew, DM (1978) Neurochemical and neuropharmacological investigations with four ergot derivatives. Pharmacology 16, Suppl. 1: 156173.CrossRefGoogle ScholarPubMed
Vigouret, JM, Jaton, AL, Enz, A (1983) Chronic application of bromocriptine at low doses induces behavioural and biochemical hypersensitivity. In: First Symposium on Restorative Neurology, Venice p. 34 (abstr.).Google Scholar
Wong, DT, Bymaster, FP (1978) Interaction of ergot alkaloids with dopamine receptors in vitro. Am. Chem. Soc. Cent. Great Lakes Reg. Meet. 25, 11 (abstr.).Google Scholar
Wong, DT, Bymaster, FP, Lane, PT, Kau, D, Kornfeld, EC (1979) (3H)-Pergolide binds to dopamine receptors in mammalian brain. NeuroSci. Abstr. (Soc. Neurosci.) 5: 577.Google Scholar
Zeilmaker, GH, Carlsen, RA (1962) Experimental studies on the effect of ergocornine methanesulfonate on the luteotrophic function of the rat pituitary gland. Acta Endocrinol. (Copenh.) 41: 321330.Google ScholarPubMed