Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T20:42:51.811Z Has data issue: false hasContentIssue false

The High Incidence of Valproate Hepatotoxicity in Infants May Relate to Familial Metabolic Defects

Published online by Cambridge University Press:  18 September 2015

R.E. Appleton
Affiliation:
Department of Pediatrics, British Columbia's Children's Hospital, University of British Columbia, Vancouver
K. Farrell*
Affiliation:
Department of Pediatrics, British Columbia's Children's Hospital, University of British Columbia, Vancouver
D.A. Applegarth
Affiliation:
Department of Pediatrics, British Columbia's Children's Hospital, University of British Columbia, Vancouver Department of Pathology, British Columbia's Children's Hospital, University of British Columbia, Vancouver
J.E. Dimmick
Affiliation:
Department of Pathology, British Columbia's Children's Hospital, University of British Columbia, Vancouver
L.T.K. Wong
Affiliation:
Department of Pediatrics, British Columbia's Children's Hospital, University of British Columbia, Vancouver
A.G.F. Davidson
Affiliation:
Department of Pediatrics, British Columbia's Children's Hospital, University of British Columbia, Vancouver
*
British Columbia's Children's Hospital, 4480 Oak Street, Vancouver, British Columbia, Canada V6H 3V4
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The incidence of fatal hepatic failure associated with valproic acid (VPA) therapy is highest in children under the age of three years, particularly in those with developmental delay. The pathogenesis of VPA hepatotoxicity is unclear but may relate to the accumulation of a toxic metabolite of VPA which impairs fatty-acid oxidation. We describe two unrelated infants with developmental delay who developed hepatic failure while receiving VPA. Siblings of both children subsequently developed hepatic steatosis and intractable seizures without being exposed to VPA. This suggests that that the two children who developed liver failure when receiving VPA may have had a familial metabolic disorder. Familial metabolic disorders may account partly for the higher incidence of fatal hepatotoxicity described in infants receiving VPA.

Résumé:

RÉSUMÉ:

L'incidence de l'insuffisance hépatique fatale associée au traitement par l'acide valproïque (AVP) est plus élevée chez les enfants en bas de trois ans, particulièrement chez ceux qui ont un retard de développement. La pathogenèse de l'hépatotoxicité due à l'AVP n'est pas claire, mais elle peut être en relation avec l'accumulation d'un métabolite toxique de l'AVP qui entrave l'oxidation des acides gras. Nous décrivons le cas de deux nourrissons non apparentés ayant un retard de développement, qui ont développé une insuffisance hépatique sous AVP. Des membres de la fratrie des deux enfants ont ultérieurement développé une stéatose hépatique et des convulsions résistantes au traitement sans exposition à l'AVP. Ceci suggère que les deux enfants qui ont développé une insuffisance hépatique sous AVP avaient peut-être une anomalie métabolique familiale. Les anomalies métaboliques familiales peuvent être en partie responsables de l'incidence plus élevée d'hépatotoxicité fatale décrite chez les nourrissons recevant de l'AVP.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1990

References

REFERENCES

1. Dreifuss, FE, Santili, N, Langer, DH, et al. Valproic acid hepatic fatalities. Neurology 1987; 37: 379385.CrossRefGoogle ScholarPubMed
2. Dreifuss, FE, Langer, DH, Moline, KA, et al. Valproic acid hepatic fatalities. II. US experience since 1984. Neurology 1989; 39: 201207.CrossRefGoogle ScholarPubMed
3. Rettie, AE, Rettenmeier, AW, Howald, WN, et al. Cytochrome P450-catalyzed formation of 4-ene VPA, a toxic metabolite of valproic acid. Science 1987; 235: 890893.CrossRefGoogle Scholar
4. Powell-Jackson, PR, Tredger, JM, Williams, R. Hepatotoxicity to sodium valproate: a review. Gut 1984; 25: 673681.CrossRefGoogle ScholarPubMed
5. Zimmerman, HJ, Ishak, KG. Valproate-induced hepatic injury: anal-ysis of 23 fatal cases. Hepatology 1982; 2: 591597.CrossRefGoogle Scholar
6. Glaser, GH. Medical complications of status epilepticus. In: Delgado-Escueta, AN, Wasterlain, CG, Treiman, DM, Porter, EJ, eds. Status Epilepticus, Mechanism of Brain Damage and Treatment. Advances in Neurology (Volume 34). New York: Raven Press 1983: 396398.Google Scholar
7. Camfield, C, Camfield, P, Smith, E, et al. Asymptomatic children with epilepsy: little benefit from screening for anti-convulsant induced liver, blood or renal damage. Neurology 1986; 36: 838841.CrossRefGoogle ScholarPubMed
8. Abu-Arafeh, IA, Wallace, SJ. Unwanted effects of epileptic drugs. Dev Med Child Neurol 1988; 30: 115121.CrossRefGoogle ScholarPubMed
9. Howat, AJ, Bennett, MJ, Variend, S, et al. Defects of metabolism of fatty acids in the sudden infant death syndrome. Br Med J 1985; 290: 17711773.CrossRefGoogle ScholarPubMed
10. Leading article. Sudden infant death and inherited disorders of fat oxidation. Lancet 1986; 2: 10731075.Google Scholar
11. Roe, CR, Millington, DS, Maltby, DA, et al. Recognition of medium-chain acyl CoA dehydrogenase deficiency in asymptomatic sib-lings of children dying of sudden infant death or Reye-like syn-dromes. J Pediatr 1986; 108: 1318.CrossRefGoogle ScholarPubMed
12. Roe, CR, Millington, DS, Maltby, DA, et al. Post-mortem recogni-tion of inherited metabolic disorders from specific acylcarnitines in tissue in cases of sudden infant death. Lancet 1987; 1: 512.CrossRefGoogle Scholar
13. Harpey, JP, Charpentier, C, Coude, M, et al. Sudden infant death syn-drome and multiple acyl-coenzyme A dehydrogenase deficiency, ethylmalomic-adipicaciduria or systemic carnitine deficiency. J Pediatr 1987; 110: 881883.CrossRefGoogle ScholarPubMed
14. Bougneres, PI, Rocchiccioli, F, Kolvraa, S, et al. Medium-chain acyl CoA dehydrogenase deficiency in two siblings with a Reye-like syndrome. J Pediatr 1985; 106: 918921.CrossRefGoogle ScholarPubMed
15. Taubman, B, Hale, DE, Kelley, RI. Familial Reye-like syndrome: a presentation of medium chain acyl-coenzyme A dehydrogenase deficiency. Paediatrics 1987; 79: 382385.CrossRefGoogle ScholarPubMed
16. Huttenlocher, PR, Solitaire, GB, Adams, G. Infantile diffuse cerebral degeneration with hepatic cirrhosis. Arch Neurol 1976; 33: 186192.CrossRefGoogle ScholarPubMed
17. Boyd, SG, Harden, A, Egger, J, et al. Progressive neuronal degenera-tion of childhood with liver disease (“Alpers’ Disease”): charac-teristic neurophysiological features. Neuropaediatrics 1986; 17: 7580.CrossRefGoogle Scholar
18. Harding, BN, Egger, J, Portmann, B, et al. Progressive neuronal degeneration of childhood with liver disease. Brain 1986; 109: 181206.CrossRefGoogle ScholarPubMed
19. Egger, J, Harding, BN, Boyd, SG, et al. Progressive neuronal degen-eration of childhood (PNDC) with liver disease. Clinical Pediatrics 1987; 26: 167173.CrossRefGoogle Scholar
20. Alpers, BJ. Diffuse progressive degeneration of the grey matter of the cerebrum. Arch Neurol Psychiatry 1931; 25: 469505.CrossRefGoogle Scholar
21. Green, SH. Sodium valproate and routine liver function tests. Arch Dis Child 1984; 59: 813814.CrossRefGoogle ScholarPubMed
22. Hayasaka, K, Takahashi, I, Kobayashi, Y, et al. Effects of valproate on biogenesis and function of liver mitochondria. Neurology 1986; 36: 351356.CrossRefGoogle ScholarPubMed
23. Prick, MJJ, Gabreels, FJM, Trijbels, JMF, et al. Progressive poliodystrophy (Alpers’ Disease) with a defect in cytochrome aa3 in muscle: a report of two unrelated patients. Clin Neurol Neurosurg 1983; 85: 5769.CrossRefGoogle ScholarPubMed
24. Prick, M, Gabreels, F, Renier, W, et al. Pyruvate dehydrogenase deficiency restricted to brain. Neurology 1981, 85:(NY)31: 398404.CrossRefGoogle Scholar
25. Tommasi, M, Jouvet-Telinge, A, Kopp, N, et al. Poliodystrophie cérébrale infantile d’Alpers. Un cas avec anomalie de la pyruvatecarboxylase hépatique. Ann Anat Pathol 1977; 22: 337342.Google Scholar
26. Prick, MJJ, Gabreels, JM, Renier, WO, et al. Progressive infantile poliodystrophy. Association with disturbed pyruvate oxidation in muscle and liver. Arch Neurol 1981; 38: 767772.CrossRefGoogle ScholarPubMed
27. Prick, MJJ, Gabreels, FJM, Renier, WO, et al. Progressive infantile poliodystrophy (Alpers’ Disease) with a defect in citric acid cycle activity in liver and fibroblasts. Neuropediatrics 1982; 13: 108111.CrossRefGoogle ScholarPubMed
28. Maertens, P, Weisman, E, Pippenger, CE. Free radical scavenging enzyme activities in Alpers disease. Ann Neurology. 1989; 26: 437.Google Scholar
29. Farber, JL. Xenobiotics, drug metabolism, and liver injury. Monographs in pathology 1987; 28: 4353.Google Scholar
30. Hjelm, M, de Silva, LVK, Seakins, JWT, et al. Evidence of inherited urea cycle defect in a case of fatal valproate toxicity. Br Med J 1986; 292: 2324.CrossRefGoogle Scholar
31. Ware, S, Millward-Sedler, GH. Sodium valproate and ornithine carbamyl transferase deficiency. Lancet 1981; 2: 11651166.Google Scholar
32. Morgan, HB, Swaiman, KF, Johnson, BD. Diagnosis of argininosuccinic aciduria after valproic acid-induced hyperammonemia. Neurology 1987; 37: 886887.CrossRefGoogle ScholarPubMed
33. Marini, AM, Zaret, BS, Beckner, RR. Hepatic and renal contributions to valproic acid-induced hyperammonemia. Neurology 1988; 38: 365371.CrossRefGoogle ScholarPubMed
34. Hjelm, M, Oberholzer, V, Seakins, J, et al. Valproate-induced inhibition of urea synthesis and hyperammonemia in healthy subjects. Lancet 1986; 2: 859.CrossRefGoogle ScholarPubMed