Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-23T20:45:14.113Z Has data issue: false hasContentIssue false

Hereditary Canine Spinal Muscular Atrophy: An Animal Model of Motor Neuron Disease

Published online by Cambridge University Press:  18 September 2015

Linda C. Cork*
Affiliation:
Division of Comparative Medicine, The Johns Hopkins University School of Medicine, Baltimore
*
Division of Comparative Medicine, John Hopkins University School of Medicine, Baltimore, Maryland, U.S.A. 21205
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Motor neuron diseases selectively produce degeneration and death of motor neurons; the pathogenesis of these disorders and the specificity for this population of neurons are unknown. Hereditary Canine Spinal Muscular Atrophy produces a lower motor neuron disease which is clinically and pathologically similar to human motor neuron disease: motor neurons dysfunction and degenerate. The canine model provides an opportunity to investigate early stages of disease when there are viable motor neurons still present and might be responsive to a variety of therapeutic interventions. The canine disease, like the human disease, is inherited as an autosomal dominant. The extensive canine pedigree of more than 200 characterized individuals permits genetic analysis using syntenic linkage techniques which may identify a marker for the canine trait and provide insights into homologous regions for study in human kindreds.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1991

References

REFERENCES

1.Rowland, LP. Motor neuron diseases and amyotrophic lateral scle-rosis. TINS 1984; 7: 110112.Google Scholar
2.Tandan, R, Bradley, WG. Amyotrophic lateral sclerosis: Part 2, Etiopathogenesis. Ann Neurol 1985; 18: 419431.CrossRefGoogle ScholarPubMed
3.Harding, AE. Inherited neuronal atrophy and degeneration predominantly of lower motor neurons. In: Dyck, PJ, Thomas, PK, Lambert, EH, et al., eds. Peripheral Neuropathy. Philadelphia: W.B. Saunders, 1984; 15381556.Google Scholar
4.Mulder, DW. Motor neuron disease. In: Dyck, PJ, Thomas, PK, Lambert, EH, et al, eds. Peripheral Neuropathy. Philadelphia: W.B. Saunders, 1984; 15251536.Google Scholar
5.Hirano, A. Progress in the pathology of motor neuron diseases. In: Zimmerman, HM ed. Progress in Neuropathology. New York: Grune & Stratton, 1973; 181215.Google Scholar
6.Carpenter, S. Proximal axonal enlargement in motor neuron disease. Neurology 1968; 18: 841851.CrossRefGoogle ScholarPubMed
7.Delisle, MB, Carpenter, S. Neurofibrillary axonal swellings and amyotrophic lateral sclerosis. J Neurol Sci 1984; 63: 241250.CrossRefGoogle ScholarPubMed
8.Appelbaum, J, Roos, RPSalazar-Grueso, EF, et al. Intrafamilial heterogeneity of motor neuron diseases. Ann Neurol 1990; 28: 268 (Abstract).Google Scholar
9.Brzustowicz, LM, Lehner, T, Castillia, L, et al. Genetic mapping of chronic childhood-onset spinal muscular atrophy to chromosome 5ql 1.2–13.3. Nature 1990; 344: 540541.CrossRefGoogle Scholar
10.Melki, J, Abdelhak, S, Sheth, P, et al. Gene for chronic proximal spinal muscular atrophies maps to chromosome 5q. Nature 344: 767768.CrossRefGoogle Scholar
11.Gilliam, TC, Brzustowicz, LM, Castillia, LH, et al. Genetic homogenity between acute and chronic forms of spinal muscular atrophy. Nature 1990; 345: 823825.CrossRefGoogle Scholar
12.Siddique, T, Pericak-Vance, MA, Roos, RP, et al. Multipoint linkage analysis of chromosome 21 restriction fragment length polymorphism markers to familial amyotrophic lateral sclerosis. Ann Neurol 1990; 28: 269 (Abstract).Google Scholar
13.Cork, LC, Griffin, JW, Munnell, JF, et al. Hereditary canine spinal muscular atrophy. J Neuropathol Exp Neurol 1979; 38: 209221.CrossRefGoogle ScholarPubMed
14.Lorenz, MD, Cork, LC, Griffin, JW, et al. Hereditary spinal muscular atrophy in Brittany Spaniels: clinical manifestations. JAVMA 1979; 175: 833839.Google ScholarPubMed
15.Sack, GH Jr, Cork, LC, Morris, JM, et al. Autosomal dominant inheritance of hereditary canine spinal muscular atrophy. Ann Neurol 1984; 15: 369373.CrossRefGoogle ScholarPubMed
16.Cork, LC, Griffin, JW, Choy, C, et al. Pathology of motor neurons in accelerated hereditary canine spinal muscular atrophy. Lab Invest 1982; 46: 8999.Google ScholarPubMed
17.Griffin, JW, Cork, LC, Adams, RJ, et al. Axonal transport in hereditary canine spinal muscular atrophy (HCSMA). J Neuropath Exp Neurol 1982; 41: 370.CrossRefGoogle Scholar
18.Cork, LC, Altschuler, RJ, Bruha, PJ, et al. Changes in neuronal size and neurotransmitter markers in hereditary canine spinal muscular atrophy., Lab Invest 1989; 61: 6976.Google ScholarPubMed
19.Cork, LC, Struble, G, Gold, BG, et al. Changes in the size of motor axons in hereditary canine spinal muscular atrophy. Lab Invest 1989; 61: 333342.Google ScholarPubMed
20.Plaitakis, A. Glutamate dysfunction and selective motor neuron degeneration in amyotrophic lateral sclerosis: an hypothesis. Ann Neurol 1990; 28: 38.CrossRefGoogle ScholarPubMed
21.Perry, TL, Krieger, C, Hansen, S, et al. Amyotrophic lateral sclerosis: amino acid levels in plasma and cerebrospinal fluid. Ann Neurol 1990; 28: 1217.CrossRefGoogle ScholarPubMed
22.Rothstein, JD, Tsai, G, Kuncl, RW. Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol 1990; 28: 1825.CrossRefGoogle ScholarPubMed
23.Perry, TL, Hansen, S, Jones, K. Brain glutamate deficiency in amyotrophic lateral sclerosis. Neurology 1987; 37: 18451848.CrossRefGoogle ScholarPubMed
24.Hefti, F. Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci 1986; 6: 21552162.CrossRefGoogle ScholarPubMed
25.Ernfors, PHenschen, A, Olson, L, et al. Expression of nerve growth factor receptor mRNA is developmentally regulated and increased after axotomy in rat spinal cord motoneurons. Neuron 1989; 2: 16051613.CrossRefGoogle ScholarPubMed