Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T02:58:06.777Z Has data issue: false hasContentIssue false

Excitation and Inhibition in Epilepsy

Published online by Cambridge University Press:  18 September 2015

Jerome Engel Jr.*
Affiliation:
Departments of Neurology and Neurobiology and the Brain Research Institute, UCLA School of Medicine, Los Angeles
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The term epileptic seizures is used to describe a variety of paroxysmal signs and symptoms resulting from a large number of underlying pathological processes. Generalized tonic-clonic convulsions, therefore, reflect entirely different basic neuronal mechanisms than those of typical absences. Animal research suggests that the former result from disturbances that involve disinhibilion, whereas the abnormality giving rise to the latter requires intact, if not enhanced, inhibition in order to sustain hypersynchronous neuronal discharges. Investigations in human mesial temporal lobe epilepsy and chronic experimental animal models indicate that partial seizures can also reflect multiple underlying mechanisms, with some disinhibitory in type, while others appear to be hypersynchronous and associated with enhanced inhibition. Just as more than one epileptogenic disturbance can result in transition to ictus, it is likely that more than one mechanism can be engaged to terminate epileptic seizures, that these diverse processes could result in different postictal manifestations, and that they could conceivably contribute differently to the development of interictal behavioral disturbances. An appreciation for the fact that epilepsy is not merely an increase in excitation and/or a decrease in inhibition, but a variety of complicated neuronal interactions in different patients, or even at different times in the same patient or same seizure, is essential to the development of effective treatments to control epileptic seizures and prevent their consequences.

Résumé

Résumé

Excitation et inhibition dans l’épilepsie. Le terme crise d’épilepsie est utilisé pour décrire une variété de signes et de symptômes paroxystiques résultant d’un grand nombre de processus pathologiques sous-jaeents. Les convulsions toniques-cloniques généralisées reflètent donc des mécanismes neuronaux de base qui sont entièrement différents de ceux des absences typiques. La recherche chez l’animal suggère que les premières résultent de perturbations qui impliquent une désinhibition, alors que les secondes résultent d’une anomalie qui requière une inhibition intacte ou même accrue pour maintenir des décharges neuronales hypersynchrones. L’investigation de l’épilepsie mésiale du lobe temporal chez l’humain et chez des modèles animaux d’épilepsie expérimentale chronique indiquent que les crises partielles peuvent également refléter des mécanismes sous-jacents multiples. dont quelques uns sont de type désinhibition alors que d’autres semblent être hypersynchrones et associés à une inhibition accrue. Comme plus d’une perturbation épileptogène peut prédisposer à l’ictus, il est également possible que plus d’un mécanisme peut être mobilisé pour mettre fin à une crise d’épilepsie, que ces divers processus pourraient donner lieu à des manifestations postcritiques différentes et qu’ils pourraient vraisemblablement contribuer différemment au développement de perturbations du comportement entre les crises. Il est essentiel de reconnaître que l’épilepsie n’est pas seulement une augmentation de l’excitation et/ou une diminution de l’inhibition, mais une variété d’interactions neuronales complexes chez différents patients ou même à différents moments chez le même patient ou pendant la même crise afin de développer des traitements efficaces pour contrôler les crises d’épilepsie et en prévenir les conséquences.

Type
Review Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1996

References

1. Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised clinical and electroencephalographic classification of epileptic seizures. Epilepsia 1981; 22: 489501.Google Scholar
2. Commission on Classification and Terminology of the International League Against Epilepsy. Proposal for revised classification of epilepsies and epileptic syndromes. Epilepsia 1989; 30: 389399.Google Scholar
3. Engel, J Jr. Functional explorations of the human epileptic brain and their therapeutic implications. Electroencephalogr Clin Neurophysiol 1990; 76: 296316.Google Scholar
4. Gloor, P., Fariello, RG. Generalized epilepsy: some of its cellular mechanisms differ from those of focal epilepsy. Trends Neurosci 1988; 11: 6368.Google Scholar
5. Matsumoto, H., Ajmone-Marsan, C. Cortical cellular phenomena in experimental epilepsy: ictal manifestations. Exp Neurol 1964; 9: 305326.Google Scholar
6. Giaretta, D., Avoli, M., Gloor, P. Intracellular recordings in pericruciate neurons during spike and wave discharges of feline generalized penicillin epilepsy. Brain Res 1987; 405: 6879.CrossRefGoogle ScholarPubMed
7. Avanzini, G., Vergenes, M., Spreafico, R., Marescaux, C. Calciumdependent regulation of genetically determined spike and waves by the reticular thalamic nucleus of rats. Epilepsia 1993; 34: 17.Google Scholar
8. Coulter, DA., Huguenard, JR., Prince, DA. Specific petit mal anticonvulsants reduce calcium currents in thalamic neurons. Neurosci Lett 1989; 98: 7478.Google Scholar
9. Levy, RH., Mattson, RH., Meldrum, BS., eds. Antiepileptic Drugs, 4th edition. New York: Raven Press, 1995.Google Scholar
10. Engel, J Jr. Brain metabolism and pathophysiology of human epilepsy. In: Dichter, M., ed. Mechanisms of Epileptogenesis: Transition to Seizure. New York: Plenum Press, 1988; 115.Google Scholar
11. Townsend, JB., Engel, J Jr. Clinicopathological correlations of low voltage fast and high amplitude spike and wave mesial temporal stereoencephalographic ictal onsets. Epilepsia 1991; 32 (Suppl. 3): 21.Google Scholar
12. King, D., Spencer, S. Invasive electroencephalography in mesial temporal lobe epilepsy. J Clin Neurophysiol 1995; 12: 3245.Google Scholar
13. Babb, TL., Crandall, PH. Epileptogenesis of human limbic neurons in psychomotor epileptics. Electroencephalogr Clin Neurophysiol 1976; 40: 225243.Google Scholar
14. Matsumoto, H., Ajmone-Marsan, C. Cortical cellular phenomena in experimental epilepsy: interictal manifestations. Exp Neurol 1964; 9: 286304.Google ScholarPubMed
15. Colder, BW., Wilson, CL., Frysinger, RC., et al. Neuronal synchrony in relation to burst discharge in epileptic human temporal lobes. J Neurophysiol (in press).Google Scholar
16. Isokawa-Akesson, M., Wilson, CL., Babb, TL. Prolonged inhibition in synchronously firing human hippocampal neurons. Epilepsy Res 1989; 3: 236247.Google Scholar
17. Andersen, P., Sears, TA. The role of inhibition in the phasing of spontaneous thalamocortical discharge. J Physiol 1964; 173: 459480.Google Scholar
18. Wilson, CL., Engel, J Jr. Electrical stimulation of the human epileptic limbic cortex. In: Devinsky, O., Beric, A., Dogali, M., eds. Electrical and Magnetic Stimulation of the Brain and Spinal Cord. New York: Raven Press, 1993; 103113.Google Scholar
19. Kamphuis, W., Gorter, JA., Wytse, JW., Lopes da Silva, FH. Hippocampal kindling leads to different changes in paired-pulse depression of local evoked field potentials in CA1 area and in fascia dentata. Neurosci Lett 1992; 141: 101105.Google Scholar
20. Cherlow, DG., Dymond, AM., Crandall, PH., Walter, RD., Serafetinides, EA. Evoked response and after-discharge thresholds to electrical stimulation in temporal lobe epileptics. Arch Neurol 1977; 34: 527531.Google Scholar
21. Penfield, W., Jasper, H. Epilepsy and the functional anatomy of the human brain. Boston: Little, Brown & Co., 1954.Google Scholar
22. Henry, TR., Mazziotta, JC., Engel, J Jr. Interictal metabolic anatomy of limbic temporal lobe epilepsy. Arch Neurol 1993; 50: 582589.Google Scholar
23. Henry, TR., Sutherling, WW., Engel, J Jr, et al. Interictal cerebral metabolism in partial epilepsies of neocortical origin. Epilepsy Res 1991; 10: 174182.Google Scholar
24. Engel, J Jr, Van Ness, P., Rasmussen, TB., Ojemann, LM. Outcome with respect to epileptic seizures. In: Engel, J Jr, ed. Surgical Treatment of the Epilepsies, 2nd edition. New York: Raven Press, 1993; 609621.Google Scholar
25. Prince, DA., Wilder, BJ. Control mechanisms in cortical epileptogenic foci: “surround” inhibition. Arch Neurol 1967; 16: 194202.Google Scholar
26. Ackermann, RF., Finch, DM., Babb, TL., Engel, J Jr. Increased glucose metabolism during long-duration recurrent inhibition of hippocampal pyramidal cells. J Neurosci 1984; 4: 251264.Google Scholar
27. Chugani, HT., Ackermann, RF., Chugani, DC., Engel, J Jr. Opioidinduced epileptogenic phenomena: anatomical, behavioral, and electroencephalographic features. Ann Neurol 1984; 15: 361368.Google Scholar
28. Caldecott-Hazard, S., Engel, J Jr. Limbic postictal events: anatomical substrates and opioid receptor involvement. Prog Neuropsychopharmacol Biol Psychiat 1987; 11: 389418.Google Scholar
29. Rocha, L., Ackermann, RF., Engel, J Jr. Effects of chronic morphine pretreatment on amygdaloid kindling development, postictal seizure suppression and benzodiazepine receptor binding in rats. Epilepsy Res (in press).Google Scholar
30. Frost, JJ., Mayberg, HS., Fisher, RS., et al. Mu-opiate receptors measured by positron emission tomography are increased in temporal lobe epilepsy. Ann Neurol 1988; 23: 231237.Google Scholar
31. Hitzemann, RJ., Hitzemann, BA., Blatt, S., et al. Repeated electroconvulsive shock: effect on sodium dependency and regional distribution of opioid-binding sites. Mol Pharmacol 1987; 31: 562566.Google Scholar
32. Savie, I., Persson, A., Roland, P., et al. In-vivo demonstration of reduced benzodiazepine receptor binding in human epileptic foci. Lancet 1988; 8616: 863866.Google Scholar
33. Henry, TR., Frey, KA., Sackellares, JC., et al. In vivo cerebral metabolism and central benzodiazepine receptor binding in temporal lobe epilepsy. Neurology 1993; 43: 19982006.Google ScholarPubMed
34. During, MJ., Ryder, KM., Spencer, DD. Hippocampal GABA transporter function in temporal-lobe epilepsy. Nature 1995; 376: 174177.Google Scholar
35. Isokawa, M., Levesque, MF. Increased NMDA responses and dendritic degeneration in human epileptic hippocampal neurons in slices. Neurosci Lett 1991; 132: 212216.Google Scholar
36. Mody, I., Stanton, PK., Heinemann, U. Activation of N-methyl-Daspartate receptors parallels changes in cellular and synaptic properties of dentate granule cells after kindling. J Neurophysiol 1988; 59: 1033.Google Scholar
37. Babb, TL., Kupfer, WR., Pretorius, JK., Crandall, PH., Levesque, MF. Synaptic reorganization by mossy fibers in human epileptic fascia dentata. Neuroscience 1991; 42; 351363.Google Scholar
38. Houser, CR., Miyashiro, JE., Swartz, BE., et al. Altered patterns of dynorphin immunoreactivity suggest mossy fiber reorganization in human hippocampal epilepsy. J Neurosci 1990; 10: 267282.Google Scholar
39. Sutula, T., Cascino, G., Cavazos, J., Parada, I., Ramirez, L. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 1989; 26: 321330.Google Scholar
40. Moshe, SL., Albala, BJ. Kindling in developing rats, persistence of seizures into adulthood. Dev Brain Res 1992; 4: 6771.Google Scholar
41. Sperber, EF., Stanton, PK., Haas, K., Ackermann, RF., Moshe, SL. Developmental differences in the neurobiology of epileptic brain damage. Epilepsy Res 1992; (Suppl. 9): 6781.Google Scholar
42. deLanerolle, NC., Brines, ML., Kim, JH., et al. Neurochemical remodeling of the hippocampus in human temporal lobe epilepsy. Epilepsy Res 1992; (Suppl. 9): 205220.Google Scholar
43. Babb, TL., Pretorius, JK., Kupfer, WR., Crandall, PH. Glutamate decarboxylase-immunoreactive neurons are preserved in human epileptic hippocampus. J Neurosci 1989; 9: 25622574.Google Scholar
44. Davenport, CJ., Brown, WJ., Babb, TL. Sprouting of GABA-ergic and mossy fiber axons in dentate gyrus following intrahippocampal kainate in the rat. Exp Neurol 1990; 109: 180190.Google Scholar
45. Sloviter, RS. Permanently altered hippocampal structure, excitability and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1991; 1: 4166.Google Scholar
46. Berkenstein, JW., Lothman, EW. Dormancy of inhibitory intemeurons in a model of temporal lobe epilepsy. Science 1993; 259: 97100.Google Scholar
47. Wilson, CL., Isokawa-Akesson, M., Babb, TL., et al. A comparative view of local and interhemispheric limbic pathways in humans: an evoked potential analysis. In: Engel, J Jr, Ojemann, GA., Liiders, HO., Williamson, PD., eds. Fundamental Mechanisms of Human Brain Function. New York: Raven Press, 1987; 2738.Google ScholarPubMed
48. Mathern, GW., Cifuentes, F., Leite, JP., Pretorius, JK., Babb, TL. Hippocampal EEG excitability and chronic spontaneous seizures are associated with aberrant synaptic reorganization in the rat kainate model. Electroencephalogr Clin Neurophysiol 1993; 87: 326339.Google Scholar
49. During, MJ., Spencer, DD. Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 1993; 341: 16071610.Google Scholar
50. Wilson, C., Maidment, NT., Shomer, MH., et al. Comparison of seizure related amino acid release in human epileptic hippocampus versus a chronic, kainate rat model of hippocampal epilepsy. Epilepsy Res (in press).Google Scholar
51. Rocha, LL., Maidment, NT., Evans, CJ., Ackermann, RF., Engel, J Jr. Opioid peptide release and mu receptor binding during amygdala kindling in rats: regional discordances. Epilepsy Res (in press).Google Scholar
52. Caldecott-Hazard, S., Shavit, Y., Ackermann, RF., et al. Behavioral and electrographic effects of opioids on kindled seizures in rats. Brain Res 1982; 251: 327333.Google Scholar
53. Dragunov, M., Goddard, GV., Laverty, R. Is adenosine an endogenous anticonvulsant? Epilepsia 1985; 26: 480487.Google Scholar
54. Snead, OC., Bearden, LJ. The epileptogenic spectrum of opiate agonists. Neuropharmacology 1982; 21: 11371144.Google Scholar
55. Efron, R. Post-epileptic paralysis: theoretical critique and report of a case. Brain 1961; 84: 381394.Google Scholar
56. Engel, J Jr, Kuhl, DE., Phelps, ME., Rausch, R., Nuwer, M. Local cerebral metabolism during partial seizures. Neurology 1983; 33: 400413.Google Scholar
57. Frenk, H., Engel, J Jr, Ackermann, RF., Shavit, Y., Liebeskind, JC. Endogenous opioids may mediate post-ictal behavioral depression in amygdaloid-kindled rats. Brain Res 1979; 167: 435440.Google Scholar
58. Sperling, MR., O’Connor, MJ. Auras and subclinical seizures: characteristics and prognostic significance. Ann Neurol 1990; 28: 320328.Google Scholar
59. Engel, J Jr, Bandler, R., Griffith, NC., Caldecott-Hazard, S. Neurobiological evidence for epilepsy-induced interictal disturbances. In: Smith, D., Treiman, D., Trimble, M., eds. Advances in Neurology, New York: Raven Press, 1991; 55: 97111.Google Scholar