Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-24T02:58:27.310Z Has data issue: false hasContentIssue false

Etude Histopathologique et Neurochimique Suite a des Lesions Unilaterales du Locus Coeruleus Chez le Rat et de la Region Postlocus Chez le Chat (Part 2)

Published online by Cambridge University Press:  18 September 2015

R. Marchand
Affiliation:
Laboratoires de Neurobiologie, Hôpital de l'Enfant-Jésus et Faculté de Médecine, Université Lavât, Québec, Qué. Canada
P. Chauvel
Affiliation:
Laboratoires de Neurobiologie, Hôpital de l'Enfant-Jésus et Faculté de Médecine, Université Lavât, Québec, Qué. Canada
M. Fantino
Affiliation:
Laboratoires de Neurobiologie, Hôpital de l'Enfant-Jésus et Faculté de Médecine, Université Lavât, Québec, Qué. Canada
L.J. Poirier*
Affiliation:
Laboratoires de Neurobiologie, Hôpital de l'Enfant-Jésus et Faculté de Médecine, Université Lavât, Québec, Qué. Canada
*
Laboratoires de Neurobiologie, Pavillon Notre-Dame, 2075 ave de Vitré, Québec, Qué. GIJ 5B3.
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Unilateral lesions involving the area immediately caudal to the locus coeruleus in the cat are associated with slight decreases of noradrenaline (NA) in both sides of the spinal cord without any important change of serotonin (5-HT) concentration in the spinal cord and of N A and 5-HT concentrations in the cerebral cortex of both sides. In other cats with similar lesions involving the same area bilaterally (postlocus lesions) NA is markedly decreased and 5-H T slightly decreased in the hypothalamus and spinal cord but the concentrations of NA and 5-HT of the cerebral cortex, striât urn and thalamus are not conspicuously modified by such postlocus lesions.

Unilateral lesions in the area of the loci coeruleus and subcoeruleus in the rat are associated with a marked decrease of noradrenaline (NA) in the ipsilateral cerebral cortex without any important change of NA in the contralateral cortex and in the spinal cord of both sides. Under such conditions the concentrations of serotonin (5-HT) are not significantly modified in the cerebral cortex and spinal cord of both sides. NA and 5-HT concentrations of the cerebral cortex of both sides are unmodified by unilateral lesions of the cerebellar nuclei in the rat. In the latter group of animals slight increases of NA and 5-HT in the spinal cord are significant in comparison to the values obtained in the control animals but not from one side of the spinal cord to the other.

These results further support the suggestion that the noradrenergic coeruleo-cortical pathway originating in the loci coeruleus and subcoeruleus ascends on the same side and ends in the ipsilateral cerebral cortex. In the light of the results of this investigation and of those reported in a companion paper (Marchand et ai, 1979) NA fibers reaching the hypothalamus and spinal cord most likely arise from neurons located caudally in respect to the locus coeruleus. Moreover NA fibers ending in the hypothalamus do not ascend in the dorsolateral part of the isthmic area and, therefore, have a different course than the N A fibers reaching the cerebral cortex and thalamus.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1979

References

Anden, N. -E., DahlstrÖM, A., Fuxe, K., Larsson, K., Olson, L. and Ungerstedt, U. (1966). Ascending monoamine neurons to the telencephalon and diencephalon. Acta Physiol. Scand., 67: 313326.CrossRefGoogle Scholar
Anden, N.-E., Fuxe, K. and Ungerstedt, U. (1967). Monoamine pathways to the cerebellum and cerebral cortex. Experientia, 23: 838839.Google Scholar
Arbuthnott, G. W., Christie, J. E., Crow, T. J.Eccleston, D. and Walters, D. S. (1973). Lesions of the locus coeruleus and noradrenaline metabolism in cerebral cortex. Exp. Neurol., 41: 411417.CrossRefGoogle Scholar
Blondaux, C., Buda, M., Petitjean, F. et Pujol, J. F. (1975). Hypersomnie par lésion isthmique chez le chat. I. Etude du métabolisme des monoamines cérébrales. Brain Res., 88: 425437.Google Scholar
Carlsson, A., Falck, B., Fuxe, K. and Hillarp, N. -A. (1964). Cellular localization of monoamines in the spinal cord. Acta physiol. scand., 60: 112119.CrossRefGoogle ScholarPubMed
Chu, N. -S. and Bloom, F. E. (1974). The catecholamine-containing neurons in the cat dorsolateral pontine tegmentum: distribution of the cell bodies and some axonal projections. Brain Research; 66: 221.Google Scholar
Dahlström, A. and Fuxe, K. (1965). Evidence for the existence of monamine neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal amine levels of bulbospinal neuron systems. Acta physiol scand., 64, Suppl. 247: 136.Google Scholar
Descarries, L., Watkins, K. C. and Lapierre, Y. (1977). Noradrenergic axon terminals in the cerebral cortex of rat. III. Topometric ultrastructural analysis. Brain Research, 133: 197222.Google ScholarPubMed
Devito, J.L., Clausing, K.W. and Smith, O. A. (1974). Uptake and transport of horseradish peroxidase by cut end of the vagus nerve. Brain Res., 82: 269271.CrossRefGoogle Scholar
Falck, B., Hillarp, N. A., Thieme, G. and Torp, A. (1962). Fluorescence of catecholamines and related compounds condensed with formaldehyde. J. Histoch. Cytochem., 10: 348354.CrossRefGoogle Scholar
Fink, R. P. and Heimer, L. (1967). Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res., 4: 369374.CrossRefGoogle ScholarPubMed
Freedman, R., Foote, S. L. and Bloom, F. E. (1975). Histochemical characterization of a neocortical projection of the nucleus locus coeruleus in the squirrel monkey. J. Comp. Neur., 164: 209232.Google ScholarPubMed
Gatter, K. C. and Powell, T. P. S. (1977). The projection of the locus coeruleus upon the neocortex in the macaque monkey. Neuroscience, 2: 441445.Google ScholarPubMed
Hillarp, N. -A., Fuxe, K. and Dahlström, A. (1966). Demonstration and maping of central neurons containing dopamine, noradrenaline and 5-hydroxy-tryptamine and their reactions to psycho-pharmaca. Pharm. Rev., 18: 727741.Google Scholar
Hedreen, J.(l978). Brainstem projections of rat substantia nigra. Anat. Ree, 190: 417.Google Scholar
Jones, B. E., Bobillier, P., Pin, C. and Jouvet, M. (1973). The effects of lesion of catecholamine containing neurons upon monoamine content of the brain and EEG and behavioural waking in the cat. Brain Res., 58: 157177.Google ScholarPubMed
Jones, B. E., Halaris, A. E., McIlhany, M. and Moore, R. Y. (1977). Ascending projections of the locus coeruleus in the rat. I. Axonal transport in central noradrenaline neurons. Brain Res., 127: 121.Google ScholarPubMed
Jones, B. E. and Moore, R. Y. (1977). Ascending projections of the locus coeruleus in the rat. II. Autoradiographic study. Brain Res., 127: 2353.CrossRefGoogle ScholarPubMed
Kievit, J. and Kuypers, H. G. J. M. (1975). Basal forebrain and hypothalamic connections to frontal and parietal cortex in the rhesus monkey. Science, 187: 660662.CrossRefGoogle ScholarPubMed
Klüver, H. and Barrera, E. (1953). A method for the combined staining of cells and fibers in the nervous system. J. Neuropath. exp. Neurol., 12: 400403.CrossRefGoogle ScholarPubMed
Kobayashi, R. M., Palkovits, M., Kopin, I. and Jacobiwitz, D. (1974). Biochemical mapping of noradrenergic nerves arising from the rat coeruleus. Brain Res., 77: 269279.CrossRefGoogle ScholarPubMed
Korf, J., Aghajanian, G. K. and Roth, R. H. (1973a). Stimulation and destruction of the locus coeruleus: opposite effects on 3-methoxy 4-hydroxyphenylglycol sulfate levels in the rat cerebral cortex. Europ. J. Pharmacol., 21: 305310.Google Scholar
Korf, J., Roth, R. H. and Aghajanian, G. K. (1973b). Alterations in turnover and endogenous leves of norepinerphrine” in cerebral cortex following electrical stimula tion and acute axotomy of cerebral noradrenergic pathways. Europ. J. Pharma col., 23: 276282.Google Scholar
Kuypers, H. G. J. M. and Maisky, V. A. (1975). Retrograde axonal transport of horseradish peroxidase from spinal cord to brain stem cell groups in the cat. Neurosci. Lett., 1: 914.CrossRefGoogle ScholarPubMed
Leger, L., Sakai, K., Touret, M., Salvert, D. et Jouvet, M. (1975). Mise en évidence par la technique de peroxydase de projections directes entre le tegmentum ponto-mésencéphalique et le cortex visuel chez le chat. C.R. Acad. Sci. (Paris), 281: 11591162.Google Scholar
Levin, B. E. and Stolk, J. A. (1977). Axo-plasmic transport of norepinephrine in the locus coeruleus-hypothalamic system in the rat. Brain Res., 120: 303315.CrossRefGoogle Scholar
Llamas, A., Reinoso-Suarez, F. and Martinez-Moreno, E. (1975). Projections to the gyrus proreus from the brain stem tegmentum (locus coeruleus, raphe nuclei) in the cat, demonstrated by retrograde transport of horseradish peroxidase. Brain Res., 89: 331336,CrossRefGoogle Scholar
Loizou, L. A. (1969). Projection of the nucleus locus coeruleus in the albino rat. Brain Res., 15: 563566.CrossRefGoogle ScholarPubMed
Maeda, T., Pin, C., Salvert, D., Ligier, M. et Jouvet, M. (1973). Les neurones contenant des catécholamines du tegmentum pontique et leurs voies de projection chez le chat. Brain Res., 57: 119152.CrossRefGoogle Scholar
Maeda, T. et Shimizu, N. (1972). Projections ascendantes du locus coeruleus et d'autres neurones aminergiques pontiques au niveau du prosencéphale du rat. Brain Res., 36: 1935.CrossRefGoogle Scholar
Maickel, R. P., Cox, R. H. Jr., Saillant, J. and Miller, F. P. (1968). A method for the determination of serotonin and norepinephrine in discrete areas of rat brain. Int. J. Neuropharmacol., 7: 275281.CrossRefGoogle ScholarPubMed
Marchand, R., Fantino, M., Dan-Kova, J. et Poirier, L. J. (1979). Corrélations histopathologiques et neurochimiques en fonction de lésions de la région du locus coeruleus chez le chat. Can. J. Neur. Se. 6: 2738.Google Scholar
McBride, R. L. and Sutín, J. (1976). Projections of the locus coeruleus and adjacent pontine tegmentum in the cat. J. comp. Neur., 165: 265284.CrossRefGoogle ScholarPubMed
Olson, L. and Fuxe, K. (1971). On the projection from the locus coeruleus noradrenaline neurons: the cerebellar innervation. Brain Res., 28: 165171.CrossRefGoogle ScholarPubMed
Olson, L. and Fuxe, K. (1972). Further mapping out of central noradrenaline neuron systems: projections of the “subcoeruleus” area. Brain Res., 43: 389395.CrossRefGoogle ScholarPubMed
Pickel, V. M., Segal, M. and Bloom, F. E. (1974). Aradioautographicstudyofthe efferent pathways of the nucleus coeruleus. J. comp. Neur., 155: 1542.CrossRefGoogle Scholar
Poirier, L. J., Bouvier, G., Bedard, P., Boucher, R., Larochelle, L., Olivier, A. and Singh, P. (1969). Essai sur les circuits neuronaux impliqués dans le tremblement postural et l'hypokinésie. Rev. Ņeurol., 120: 1540.Google Scholar
Poirier, L. J. and Sourkes, T. L. (1965). Influence of the substantia nigra on the catecholamine content of the striatum. Brain, 88: 181192.CrossRefGoogle ScholarPubMed
Poirier, L. J., Sourkes, T. L., Bouvier, G., Boucher, R. and Carabin, S. (1966). Striatal amines, experimental tremor and the effect of harmaline in the monkey. Brain, 89: 3752.Google Scholar
Poitras, D. (1977). Etude histochimique et biochimique de la distribution et des projections des neurones monoaminergiques du tronc cérébral et de l'hypothalamus chez le chat. Thèse, Québec, 199pp.Google Scholar
Poitras, D. and Parent, A. (1978). Atlas of the distribution of monoamine-contain-ing nerve cell bodies in the brain stem of the cat. J. comp. Neur., 179: 699718.CrossRefGoogle ScholarPubMed
Ross, R. A. and Reis, D. J. (1974). Effects of lesions of locus coeruleus on regional distribution of dopamine-β-hydroxylase activity in rat brain. Brain Res., 73: 161166.Google ScholarPubMed
Satoh, K., Tohyama, M., Yamamoto, K., Sakumoto, T., Shimizu, N.(1977). Noradrenaline innervation of the spinal cord studied by the horse-radish peroxidase method combined with monoamine oxidase staining. Exp. Brain Res., 30: 175186.Google Scholar
Segal, M., Pickel, V. and Bloom, F. E. (1973). The projections of the nucleus locus coeruleus: an antoradiographic study. Life Sci., 13: 817821.CrossRefGoogle Scholar
Shimizu, N., Ohnishi, S., Tohyame, M. and Maeda, T. (1974). Demonstration by degeneration silver method of the ascending projection from the locus coeruleus. Exp. Brain Res., 20: 181192.CrossRefGoogle Scholar
Skinner, J. E. (1971). Neuroscience: A Laboratory Manual. Philadelphia, Saunders.Google Scholar
Snider, R. S. and Niemer, W. T. (1961). A stereotaxic atlas of the cat brain. The University of Chicago Press, Chicago.Google Scholar
Ungerstedt, U. (1971). Stereotaxic map-ping of the monoamine pathways in the rat brain. Acta physiol. scand., Suppl. 367: 148.CrossRefGoogle Scholar
Welch, A. S. and Welch, B. L. (1969). Solvent extraction method for simultaneous determination of norepinephrine, dopa-mine, serotonin and 5-hydroxyindoleacetic acid in a single mouse brain. Anal. Biochem. 30: 161179.Google Scholar
Worth, W. S., Collins, J., Kett, D. and Austin, J. H. (1976). Serial changes in norepinephrine and dopamine in rat brain after locus coeruleus lesions. Brain Res., 106: 198203.CrossRefGoogle ScholarPubMed