Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-27T14:01:44.711Z Has data issue: false hasContentIssue false

Epileptogenesis, Ictogenesis and the Design of Future Antiepileptic Drugs

Published online by Cambridge University Press:  02 December 2014

Donald F. Weaver*
Affiliation:
Departments of Medicine (Neurology) and Chemistry, Dalhousie University, Halifax, Nova Scotia, Canada
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

There is still no medical cure for epilepsy. Clinical epileptology is in need of a “paradigm shift” when it comes to the continuing development of therapeutics. An important first step in this conceptual evolution is differentiating between the notions of ictogenesis and epileptogenesis. All traditional therapeutics are anti-ictogenic, not antiepileptogenic. The future of antiepileptic drug development lies in the discovery of antiepileptogenics. Just as aspirin is not the drug of choice for meningitis, an anticonvulsant is not the drug of choice for epilepsy. Drug design for epilepsy needs to discover a penicillin, not more aspirins.

Résumé:

RÉSUMÉ:

Il n’existe pas encore de traitement médical curatif de l’épilepsie. L’épileptologie clinique aurait besoin d’un changement de perspective quant au développement de nouveaux traitements. Un premier pas important dans cette évolution conceptuelle est la distinction entre les notions d’ictogenèse et d’épileptogenèse. Tous les traitements traditionnels sont anti-ictogènes et non antiépileptogènes. L’avenir du développement des médicaments antiépileptiques réside dans la découverte d’antiépileptogènes. Tout comme l’aspirine n’est pas le médicament de choix pour la méningite, un anticonvulsivant n’est pas le médicament de choix pour traiter l’épilepsie. Ce dont nous avons besoin dans la conception de médicaments pour traiter l’épilepsie, ce n’est pas la découverte de plus d’aspirine mais la découverte d’une pénicilline.

Type
Article Commentary
Copyright
Copyright © The Canadian Journal of Neurological 2003

References

1. Sloviter, R. Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the dormant basket cell hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1991; 1: 4166.Google Scholar
2. Lowenstein, DH, Seren, MS, Longo, FM. Prolonged increases in neurotrophic activity associated with kainate-induced hippocampal synaptic reorganization. Neuroscience 1993; 56: 597604.CrossRefGoogle ScholarPubMed
3. Shinnar, S, Berg, AT. Does antiepileptic drug therapy prevent the development of chronic epilepsy? Epilepsia 1996; 37: 701708.Google Scholar
4. Mello, LEAM, Cavalheiro, EA, Tan, AM, et al. Circuit mechanisms of seizures in the pilocarpine model of chronic epilepsy: cell loss and mossy fibre sprouting. Epilepsia 1993; 34: 985995.CrossRefGoogle Scholar
5. Gower, WR. Epilepsy and Other Chronic Convulsive Disorders. London: Churchill, 1881.Google Scholar
6. Temkin, NR, Dikmen, SS, Wilensky, AJ, et al. A randomised double-blind study of phenytoin for the prevention of posttraumatic seizures. N Engl J Med 1990; 323: 497502.CrossRefGoogle Scholar
7. Beckenstein, J, Lothman, EW. Dormancy of inhibitory interneurons in a model of temporal lobe epilepsy. Science 1993; 259: 97100.Google Scholar
8. Sutula, T, Cascino, G, Cavazos, J, et al. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 1989; 26: 321330.Google Scholar
9. Larner, AJ. Axonal sprouting and synaptogenesis in temporal lobe epilepsy: possible pathogenetic and therapeutic roles of neurite growth inhibitory factors. Seizure 1995; 4: 249258.CrossRefGoogle ScholarPubMed
10. Jeffreys, JGR. Experimental neurobiology of epilepsies. Curr Opin Neurol Neurosurg 1994; 7: 113122.CrossRefGoogle Scholar
11. Bengzon, J, Kokaia, A, Ernfors, P, et al. Regulation of neurotrophin and trkA, trkB and trkC tyrosine kinase receptor messenger RNA in kindling. Neuroscience 1993; 53: 433446.Google Scholar
12. Crutcher, KA, Scott, SA, Liang, S, Evereson, WV, Weingartner, J. Detection of NGF-like activity in human brain tissue. J Neurosci 1993; 13: 25402550.CrossRefGoogle ScholarPubMed
13. Sutula, T, Xiao-Xian, H, Cavazos, J, et al. Synaptic reorganization in the hippocampus induced by abnormal functional activity. Science 1988; 239: 11471150.Google Scholar
14. Hernandez, TD. Preventing posttraumatic epilepsy after brain injury: weighing the costs and benefits of anticonvulsant prophylaxis. Trends Pharmacol Sci 1997; 18: 5962.CrossRefGoogle ScholarPubMed
15. Lothman, EW. Basic mechanisms of seizure expression. Epilepsy Res 1996; S11: 916.Google Scholar
16. Weaver, DF. Applications of computer assisted quantum pharmacology calculations in devising anticonvulsant rational polypharmacy strategies. Epilepsy Res 1996; S11: 95113.Google Scholar
17. Foy, PM, Chadwick, DW, Rajgopalan, N, Johnson, AL, Shaw, MD. Do prophylactic anticonvulsant drugs alter the pattern of seizures after craniotomy? J Neurol Neurosurg Psychiatry 1992; 55: 753757.CrossRefGoogle ScholarPubMed
18. Gall, C, Isackson, P. Limbic seizures increase neuronal production of messenger RNA for nerve growth factor in adult rat forebrain. Science 1989; 245: 758761.Google Scholar