Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-24T01:39:05.016Z Has data issue: false hasContentIssue false

The Effects of Feedback on Focal Epileptic Discharges in Man

A Preliminary Report

Published online by Cambridge University Press:  18 September 2015

A.R.M. Upton*
Affiliation:
Department of Medicine (Neurology), McMaster University Medical Centre, Hamilton, Ontario, Canada
D. Longmire
Affiliation:
Department of Medicine (Neurology), McMaster University Medical Centre, Hamilton, Ontario, Canada
*
McMaster University Medical Centre, 1200 Main St. W., Hamilton, Ontario, Canada
Rights & Permissions [Opens in a new window]

Summary:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The history of the control of epileptic disturbances by conditioning techniques is reviewed. The preliminary results of a three year trial of feedback techniques in 13 epileptic patients are presented.

Thirteen epileptic patients (age 2.5 → 39 mean, 15.1 years) with lateralized focal discharges in the EEG were given repeated trials of feedback, the focal discharges being used to trigger auditory and somatosensory stimuli. Dosages and serum levels of medication were unchanged throughout the experimental period. The number of epileptic spikes per 15 seconds was assessed by automatic trend analysis during 20 to 30 minute control, biofeedback and post-feedback epochs. Ongoing EEG activity was quantified by 8 channel frequency analysis over 10 second epochs. The patients made efforts to increase and decrease the number of spike discharges with and without feedback and the results of both triggered and random auditory, somatosensory, photic and combined stimulation were compared at various intervals over a period of up to three years. A marked reduction in the number of focal discharges was noted in eight (61.5%) patients during and immediately following the sessions.

Intermittent biofeedback sessions were not associated with a serial reduction in the number of focal EEG discharges. There was a reduction in the number of clinical epileptic disturbances in six patients (46%) and possible reasons for this improvement are discussed.

One patient suffered an increase in focal temporal lobe discharges during triggered and random auditory stimulation whereas there was a marked reduction in the number of discharges during minimal electrical stimulation of the contralateral arm. The need for careful assessment of each patient to determine appropriate feedback stimulation is stressed.

One aim of this research has been to assess the feasibility of using miniature units for continuous feedback of focal discharges in epileptic patients.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1975

References

REFERENCES

Adrian, E.D. and Matthews, B.H.C. (1934). The Berger Rhythm: potential changes from the occipital lobes in man. Brain. 57: 355385.CrossRefGoogle Scholar
Ajmone-Marson, C. (1969). Acute effects of topical epileptogenic agents. In Basic Mechanisms of the Epilepsies. Ed. Jasper, H.H.Ward, A.A. Jr., and Page, A.London: Churchill, pp.299319.Google Scholar
Arduini, A. and Lairy-Bounes, G.C. (1952). Action de la stimulation électrique de la formation reticularie du bulbe et des stimulations sensorielles sue les ondes strychniques corticales chez les chat “encéphale isolé.” Electroencephalography and Clinical Neurophysiology. 4: 503512.CrossRefGoogle Scholar
Aurelianus, Caelius. (1755). De morbis chronics, Ed. Amman, J.C.Amsterdam.Google Scholar
Bair, J.H. (1901). Development of voluntary control. Psychological Review (Washington). 8: 474510.CrossRefGoogle Scholar
Bates, J.A.V. (1962). The surgery of epilepsy in Modern Trends in Neurology. vol.3 (ed. Williams, D.). Butterworth, London.Google Scholar
Bennett, D.R.Sleep derivation and major motor convulsions. Neurology. 13 1963. 953958.CrossRefGoogle Scholar
Bennett, D.R. (1963). Sleep derivation: Neurological and electroencephalographic effects. Aerospace Medicine. (St. Paul 888890.Google Scholar
Best, W.R. (1963). Drug associated blood dyscrasias. Journal of the American Medical Association. 185: 286290.CrossRefGoogle ScholarPubMed
Booker, H.E.Forster, F.M. and Klove, H. (1965). Extinction factors in startle (acoustimotor) seizures. Neurology (Minneap.) 15: 10951103.CrossRefGoogle ScholarPubMed
Bures, J. (1953). External inhibition of the reflex epilepsy in rats and mice. Physiologia Bohemoslovenica. 2: 29.Google Scholar
Bures, J. (1956). Reflex changes of paroxysmal activity in experiment and clinic. Casopis Lekaru Ceskych (Praha). 95: 393.Google Scholar
Chocholova, L. (1962). Epileptic attacks and adaptation. Epilepsia. 3: 350358.CrossRefGoogle Scholar
Cooke, P.M. and Snider, R.S. (1955). Some cerebellar influences on electrically induced cerebral seizures.” Epilepsia. 4: 1928.CrossRefGoogle ScholarPubMed
Cooper, I.S., Amin, I., Gilman, S. (1973). The effect of chronic cerebellar stimulation upon epilepsy in man. Transactions of the American Neurological Association. 98: 192194.Google ScholarPubMed
Craddock, W.L. (1955). Use of phenacemide in epilepsy with analysis of fatal reactions and case report. Journal of the American Medical Association. 159: 14371441.CrossRefGoogle ScholarPubMed
Currie, S., Heathfield, K.W.G., Henson, R.A. and Scott, D.F. (1971). Clinical course and prognosis of temporal lobe epilepsy. Brain. vol.94: P.I., pp.173190.CrossRefGoogle ScholarPubMed
David, M., Talairach, J., and Bancaud, J. (1970). Post-Traumatic epilepsies of multiple cortical origin. Epilepsia. 2. 4958.CrossRefGoogle Scholar
Dow, R.S. (1965). Extrinsic regulatory mechanisms of seizure activity. Epilepsia. (Amst.) 6: 122140.CrossRefGoogle ScholarPubMed
Dow, R.S., Fernandez-Guardiola, A., and Manni, E. (1962). The influence of the cerebellum on experimental epilepsy. Electroencephalography and Clinical Neurophysiology. 14. 383398.CrossRefGoogle ScholarPubMed
Durup, G. and Fessard, A. (1935). L’électroencéphalogramme de l’homme. Année Psychologique. 36: 135.CrossRefGoogle Scholar
Efron, R. (1956). The effect of olfactory stimuli in arresting uncinate fits. Brain. 79: 267281.CrossRefGoogle ScholarPubMed
Efron, R. (1957). The conditioned inhibition of uncinate fits. Brain. 80: 251262.CrossRefGoogle ScholarPubMed
Fabisch, W. and Darbyshire, R. (1965). Report on an unusual case of selfinduced epilepsy with comments on some psychological and therapeutic aspects. Epilepsia. 6: 335340.CrossRefGoogle Scholar
Faidherbe, J., Franck, G., Gastaut, H. and Regis, H. (1962). The characteristics of hemiconvulsive seizures in children. Electroencephalography and Clinical Neurophysiology. 14. 775p.Google Scholar
Falconer, M.A. (1953). Discussion of the surgery of temporal lobe epilepsy: the clinical study and selection of patients. Proceedings of the Royal Society of Medicine. 46: 971974.Google Scholar
Falconer, M.A., and Kennedy, W.A. (1961). Epilepsy due to small foci temporal lesions with bilateral independent spikedischarging foci: a study of seven cases relieved by operation. Journal of Neurology, Neurosurgery and Psychiatry. 24: 205212.CrossRefGoogle Scholar
Falconer, M.A., and Corsellis, J.A.N. (1964). Etiology and pathogenesis of temporal lobe epilepsy. Archives of Neurology (Chicago). 10: 233248.CrossRefGoogle ScholarPubMed
Falconer, M.A., and Taylor, D.C. (1968). Surgical treatment of drug-resistant epilepsy due to mesial temporal sclerosis. Archives of Neurology (Chicago). 19: 353361.CrossRefGoogle ScholarPubMed
Fernandez-Guardiola, A., Alcaraz, V.M. and Guzman, F.C. (1961). Inhibition of convulsive activity in the reticular formation. Acta Neurologica Latino Americana (Montevideo). 7: 3036.Google Scholar
Fernandez-Guardiola, A., Alcaraz, V.M. and Guzman, F.C. (1956). Motification de la descarga convulsive cortical por estimulation mesencefalica. Boletin de Estudios Medicos y Biologicos (Mexico). 14: 1421.Google Scholar
Fernandez-Guardiola, A., Okujava, V.M. and Guma, E. (1968). Peripheral and central phenomena of postepileptic extinction. Epilepsia (Amsterdam). 9: 303310.CrossRefGoogle ScholarPubMed
Finkel, K.C., and Israels, S. (1959). Paradione nephrosis. Lancet. 79: 243.Google ScholarPubMed
Forster, F.M., and Campos, G.B. (1964). Conditioning factors in stroboscopic induced seizures. Epilepsia. 5: 156165.CrossRefGoogle ScholarPubMed
Forster, F.M., Hansotia, P., Cleeland, C.S. and Ludwig, A. (1969). A case of voice-induced epilepsy treated by conditioning. Neurology (Minneapolis). 19: 325331.CrossRefGoogle ScholarPubMed
Forster, F.M., Booker, H.E. and Gascon, G. (1967). Conditioning therapy in musicogenic epilepsy. Transactions of the American Neurological Association. 92: 236.Google ScholarPubMed
Forster, F.M., Klove, H.M., Peterson, W.G. and Bengzon, A.R.A. (1965). Modification of musicogenic epilepsy by extinction technique. Eighth International Congress of Neurology. 41: 269.Google Scholar
Forster, F.M., and Liske, E. (1963). Role of environmental clues in temporal lobe epilepsy. Neurology (Minneapolis). 13: 301305.CrossRefGoogle ScholarPubMed
Gastaut, H., Regis, H., Dongier, S. and Roger, A. (1956). Conditionnement électroéncephalographique des décharges épileptique et notion d’épilepsie réflexo-conditionée. Eighth International Congress of Neurology. 94: 829835.Google Scholar
Gastaut, H., and Tassinari, C.A. (1966). Triggering mechanisms in epilepsy. Epilepsia. 7: 85138.CrossRefGoogle ScholarPubMed
Gastaut, H., (1963). Epilepsies. Encephale-Encyclopedie Medico-Chirurgical.Google Scholar
Gastaut, H. (1950). Combined photic and metrazol activation of the brain. Electroencephalography and Clinical Neurophysiology. 2: 249.CrossRefGoogle ScholarPubMed
Gastaut, H. and Fischer-Williams, M. (1959). The physiopathology of epileptic seizures. In Field, J. (Ed.) Handbook of Physiology: A Critical Comprehensive Presentation of Physiological Knowledge and Concepts. Sec. 1., Vol.1: (Neurophysiology). Williams and Wilkins,Baltimore, Md. 329363.Google Scholar
Gastaut, H., Naquet, R. and Fischer-Williams, M. (1958). The pathophysiology of grand mal seizures generalized from the start. Journal of Nervous and Mental Disease. 127: 2123.CrossRefGoogle ScholarPubMed
Gorbacevich, A.B.O’nekotorykhystovnoreflektornykh mekhanizemakh epileptoidnogo propadka (Some conditioned reflex mechanisms of an epileptic seizure). Zhurnal Neurpatologii i Psikhiatrii imrai. Korsakova, S.S. (Moskva) 44: 1955. 326.Google Scholar
Goldie, L., and Green, J.M. (1959). A study of the psychological factors in a case of sensory reflex epilepsy. Brain: 82: 505524.CrossRefGoogle Scholar
Green, J.D., and Shimamoto, T. (1953). Hippocampal seizures and their propagation. Archives of Neurology and Psychiatry. (Chicago). 70: 687702.CrossRefGoogle ScholarPubMed
Guerrero-Figueroa, R., Barros, A., Heath, R.G. and Gonzales, G. (1964). Experimental subcortical epileptiform focus. Epilepsia. (Amsterdam). 5: 112139.CrossRefGoogle ScholarPubMed
Gundmundsson, G. (1966). Epilepsy in Iceland. Acta Neurologica Scandinavica. 43: Suppl.25: 124pp.Google Scholar
Henner, K., (1962). Aurae and their role in reflex mechanisms of epileptic seizures. Epilepsia, 3; 391401.CrossRefGoogle Scholar
Holubar, J. (1966). Penicillin and minor cortical foci in rats. In: Zervit, Z. (Ed.). Comparative and Cellular Pathophysiology of Epilepsy. Excerpta Medica Foundation, New York. pp.204212.Google Scholar
Howe, R.C., and Sterman, M.B. (1973). Somatosensory system evoked potentials during waking behaviour and sleep in the cat. Electroencephalography and Clinical Neurophysiology. 34: 605618.CrossRefGoogle ScholarPubMed
Hughes, J.R. (1966). Bilateral EEG abnormalities on corresponding areas. Epilepsia. (Amsterdam). 7: 4452.CrossRefGoogle ScholarPubMed
Hughes, J.R. (1967). EEG epileptiform abnormalities in different ages. Epilepsia. (Amsterdam). 8: 93104.CrossRefGoogle Scholar
Jasper, H., and Shagass, C. (1941). Conditioning occipital alpha rhythm in man. Journal of Experimental Psychology. 28; 373388.CrossRefGoogle Scholar
Jung, R. (1949). Kirnelektrische Untersuchungen uber den Electrokrampf die Erregungsablaufe in corticalen Hirnregionen bei Katz und Hund., Archives of Psychiatry and Neurology. 183: 206244.Google Scholar
Kruse, R. (1968). Osteopathien bei antiepileptischer Langzeittherapie Mschr., Kinderheilk, 116: 378381.Google Scholar
Kopeloff, L.M., Barerra, S.E. and Kopeloff, N. (1948). Temporal and spatial distribution of changes during spontaneous seizures in monkey brain. Journal of Neurophysiology. 11: 377386.Google Scholar
Kopeloff, L.M., Chusid, J.G. and Kopeloff, N. (1954). Chronic experimental epilepsy in Macaca mulatta. Neurology. (Minneapolis) 4: 218227.CrossRefGoogle ScholarPubMed
Korein, J., Maccario, M., Carmona, A., Randt, C.T. and Miller, N. (1971). Operant conditioning techniques in normal and abnormal EEG states. Proceedings of the Annual Meeting of the American Academy of Neurology. 2930.Google Scholar
Kraft, D., Von Hervath, D., Schaefer, K. (1974). Retarded growth of rats by anticonvulsant drugs. Epilepsia. 15: 8190.CrossRefGoogle ScholarPubMed
Kreindler, A., (1955). Epilepsia. Edit. Acad. Repibl. Popul. Romine. Bucarest.Google Scholar
Kreindler, A. (1965). Experimental Epilepsy (Progress in Brain Research, Vol. 19). Elsevier, Amsterdam. 19: 160167.Google Scholar
Kreindler, A. (1962). Active arrest mechanisms of epileptic seizures. Epilepsia. 3: 329337.Google Scholar
Kuligowski, Z.W., Baranska, M., Zaremba, M. and Zeilinski, J.J. (1972). Follow-up observation and further treatment of epileptic patients at the psychoneurological Research Institute (In Polish). Neurologica i Neurochirurgia Polsa (Warszawa). 6: 2: 283288.Google Scholar
Kutt, H., and Penry, J.K. (1974). Usefulness of blood levels of antiepileptic drugs. Archives of Neurology. 31; 283288.CrossRefGoogle ScholarPubMed
Lagrutta, V., Amaio, G. and Zagumi, M.T. (1971). The importance of the caudate nucleus in the control of convulsive activity in the amygdaloid complex in the temporal cortex of the cat. Electroencephalography and Clinical Neurophysiology. 31: 5769.CrossRefGoogle Scholar
Lairy-Bounes, G.C., Parma, M. and Zanchetti, A. (1952). Modifications pendant la reaction “d’arret” de Berger de l’activite convulsive produite par l’application locale de strychnine sur le cortex cerebral de lapin. Electroencephalography and Clinical Neurophysiology. 4: 495502.CrossRefGoogle Scholar
Lennox, W.G., and Cobb, S. (1933). Eppilepsy: XIII. Aura in epilepsy; Statistical review of 1,359 cases. Archives of Neurology and Psychiatry. 30; 374387.CrossRefGoogle Scholar
Liddell, D.W., (1965). The uses of epilepsy. Journal of Psychosomatic Research. Res. 9; 2123.CrossRefGoogle ScholarPubMed
Livingston, S. (1956). Etiologic factors in adult convulsions. New England Journal of Medicine. 254; 12111216.CrossRefGoogle ScholarPubMed
Lockard, J.S., Wilson, W.L. and Uhlir, V. (1972). Spontaneous seizure frequency and avoidance conditioning in monkeys. Epilepsia. 13: 437444.CrossRefGoogle ScholarPubMed
Maier, N.R.F., and Glaser, N.M. (1947). Studies of abnormal behaviour in the rat. Part 10. Influence of age and sex on the susceptibility to seizures during auditory stimulation. Journal of Comparative Physiology and Psychiatry. 40: 73.CrossRefGoogle Scholar
Martinek, Z., and Horak, F. (1970). Development of so-called genuine epileptic seizures in dogs during emotional excitement. Physiologica Bohemoslovenica. 19: 185195.Google ScholarPubMed
Meadow, S.R. (1968). Anticonvulsant drugs and congenital abnormalities. Lancet. 2: 1296.CrossRefGoogle ScholarPubMed
Meadow, S.R. (1970). Congenital abnormalities and anticonvulsant drugs. Proceedings of the Royal Society of Medicine. 63: 4849.CrossRefGoogle ScholarPubMed
Merritt, H.H. (1947). “Historical Review of the pharmacologic approach to the treatment of epilepsy”, in Hoch, P.H. and Knight, R.P. (eds.) Epilepsy: Psychiatric aspects of convulsive disorders. New York: Grune and Stratton, Inc.Google Scholar
Meyers, R. (1954). The surgical treatment of focal epilepsy: an inquiry into current premises, their implementation and the criteria employed in reporting results. Epilepsia (Amsterdam). 3: 128.Google ScholarPubMed
Miller, N.E. (1969). Learning of visceral and grandular responses. Science. 163: 434445.CrossRefGoogle Scholar
Monrad-Krohn, G.H. (1931). The clinic of epilepsy. Acta Psychiatrica et Neurologica. 6: 137157.CrossRefGoogle Scholar
Mulholland, T., and Runnals, S. (1962). Evaluation of attention and alertness with a stimulus-brain feedback loop. Electroencephalography and Clinical Neurophysiology. 14: 847852.CrossRefGoogle Scholar
Mullholland, T.B. (1968). Feedback electroencephalography. Activitas Nervosa Superior (Praha). 10: 410438.Google ScholarPubMed
Mutani, R., Bergamini, L. and Goriguzzi, T. (1969). Experimental evidence for the existence of an extrarhinencephalic epileptogenic focus. Part 1 (Effects of the paleocerebellar stimulation). Epilepsia. (Amsterdam). 10: 351362.Google ScholarPubMed
Naquet, R. (1961). Conditionnement de discharges hypersynchrones epileptiques chez l’homme et l’animal. In: Brain Mechanisms and Learning. 625639.Google Scholar
Nie, V., Upton, A. and Ettlinger, G. (1973). Behavioural impairment in the monkey following implantation of aluminum hydroxide on the temporal cortex: the role of cortical destruction. Experimental Neurology. 40: 632651.CrossRefGoogle ScholarPubMed
Nowlis, D.P., and Kamiya, J. (1970). The control of electroencephalographic alpha rhythms through auditory feedback and associated mental activity. Psychophysiology. 6: 476484.CrossRefGoogle ScholarPubMed
Orne, M.T., (1962). On the social psychology of the psychological experiments with particular reference to demand characteristics and their implications. American Psychologist. 17: 776783.CrossRefGoogle Scholar
Paulson, G.W. (1963). Inhibition of seizures. Diseases of the Nervous System. 24: 657664.Google ScholarPubMed
Penfield, W.G. and Erickson, C. (1941). Epilepsy and cerebral localization. Springfield: Charles C. Thomas.Google Scholar
Penfield, W.G., and Steelman, H. (1947). The treatment of focal epilepsy by cortical excision. Annals of Surgery. 126: 740762.CrossRefGoogle ScholarPubMed
Penfield, W. and Jasper, H. (1754). Epilepsy and the functional anatomy of the human brain, Little, Brown and Co. Boston. p.654.Google Scholar
Petran, M. (1953). Contribution to Pathogenesis of Experimental Epilepsy with special reference to the balance and dynamics of excitation and inhibition. Thesis Prague.Google Scholar
Pitha, V. (1938). Epilepsie réflexe. Revue Neurologique. 70: 178181.Google Scholar
Pudenz, R.H.Bullara, L.A., Dru, D. and Talalla, A. (1975). Electrical stimulation of the brain. II. Effects on the blood-brain barrier. Surgical Neurology.In Press.Google ScholarPubMed
Rapport, R.L., and Penry, J.K. (1973). A survey of attitudes toward the pharmacological prophylaxis of post-traumatic epilepsy. Journal of Neurosurgery. 38: 159166.CrossRefGoogle Scholar
Reimer, G.R., Grimm, R.J. and Dow, R.S. (1967). Effects of cerebellar stimulation on cobalt-induced epilepsy in the cat. Electroencephalography and Clinical Neurophysiology. 23: 456462.CrossRefGoogle ScholarPubMed
Reynolds, E.H. (1967). Effects of folic and on he mental state and fit frequency of drug-treated epileptic patients. Lancet. 1: 10861088.CrossRefGoogle Scholar
Rosenfeld, S., Swiller, A.I.Shenoy, Y.M.Y. and Morrison, A.N. (1961). Syndrome simulating lymphosarcoma induced by diphenylhydantoin sodium. Journal of the American Medical Association. 176: 491.CrossRefGoogle Scholar
Roth, S.R., Sterman, M.B. and Clemente, C.D. (1967). Comparison of EEG correlates of reinforcement. Internal inhibition and sleep. Electroencephalography and Clinical Neurophysiology. 23: 509520.CrossRefGoogle ScholarPubMed
Rutledge, L., Ranck, J. and Duncan, J. (1967). Prevention of supersensitivity in partially isolated cerebral cortex. Electroencephalography and Clinical Neurophysiology. 23: 256.CrossRefGoogle ScholarPubMed
Sacks, B., Fenwick, P.B.C.Marks, I.Fenton, G.W. and Hebden, A. (1972). An investigation of the autocontrol of the alpha rhythm and possible associated feeling states using visual feedback. Electroencephalography and Clinical Neurophysiology. 32: 461463.Google Scholar
Shagass, C. (1942). Conditioning the human occipital alpha rhythm to a voluntary stimulus. A quantitative study. Journal of Experimental Psychology. 31: 367379.CrossRefGoogle Scholar
Sharpless, S.K., and Halpern, L. (1967). The electrical excitability of chronically isolated cortex studied by means of permanently implanted electrodes. Electroencephalography and Clinical Neurophysiology. 23: pp.256.Google Scholar
Small, J.G., Stevens, J.R. and Mulstein, V. (1964). Electroclinical correlates of emotional activation of the electroencephalogram. Journal of Nervous and Mental disease. 1381: p.146155.CrossRefGoogle Scholar
Sneddon, I.B., and Leishman, A.W.D. (1952). Severe and fatal phenobarbital eruptions. British Medical Journal. 1: 1276.CrossRefGoogle ScholarPubMed
Snider, R.S., and Cooke, P.M. (1954). Cerebral seizures as influenced by cerebellar stimulation. Transactions of the American Neurological Association. 79: 8789.Google Scholar
Steriade, M. (1960). Mechanisms de facilitare si inhibitc in epilepsia penicilinica focal corticale. Studii si cercetari de neurologie. 5: 463471.Google Scholar
Sterman, M.B. (1973). Neurophysiological and clinical studies of sensorimotor EEG biofeedback training: Some effects on epilepsy. In: Birk, L. (Ed.). Seminars in Psychiatry. Vol.5: 507525.Google ScholarPubMed
Sterman, M.B., and Friar, L. (1972). Suppression of seizures in an epileptic following sensorimotor EEG feedback training. Electroencephalography and Clinical Neurophysiology. 33: 8995.CrossRefGoogle Scholar
Sterman, M.B., Lopresti, R.W. and Fairchild, M.D. (1969a). Electroencephalographic and Behavioural Studies of Monomethyl Hydrozine Toxicity in the Cat. Technical Report. AMRL-TR-69-3. Air Systems Command, Wright-Patterson Air Force Base, Ohio.Google Scholar
Sterman, M.B., Lucas, E.A. and Macdonald, L.R.Periodicity within sleep and operant performance in the cat. Brain Research. 38: 1972. 327341.CrossRefGoogle ScholarPubMed
Sterman, M.B., Wyrwicka, W. and Roth, S.R. (1969). Electrophysiological correlates and neural substrates of alimentary behaviour in the cat. In: Morgane, J.P. and Wayner, M. (Eds.) Neural Regulation of Food and Water Intake. Annals of the New York Academy of Science. 156: 723739.CrossRefGoogle Scholar
Sterman, M.B., Macdonald, L.R. and Stone, R.K. (1974). Biofeedback Training of the Sensorimotor electroencephalogram rhythm in Man: Effects on Epilepsy. Epilepsia. 15: 395416.CrossRefGoogle ScholarPubMed
Stevens, J.R. (1961). Sensory stimulation in centrencephalic and focal cortical epilepsy. Electroencephalography and Clinical Neurophysiology. 13: 309.Google Scholar
Symonds, C. (1961). Some observations on facilitation or arrest of epileptic seizures. Chap 11. in Scientific Aspects of Neurology. Garland, H. ed. London, E. S. Livingstone Ltd.Google Scholar
Trojaborg, W. (1966). Focal spike discharges in children. A Longitudinal study. Acta Paediatrica Scandinavica. 168: 113p.Google Scholar
Upton, A.R.M.Biofeedback control of focal epilepsy. Federation of the Western Societies of Neurological Sciences. San Diego, California. February 28, 1975.Google Scholar
Wada, J., and Cornelius, L.R. (1960). Functional alteration of deep structures in cats With chronic focal cortical irritative lesions. Archives of Neurology (Chicago). 3: 425557.CrossRefGoogle ScholarPubMed
Ward, A.A. Jr.McCulloch, W.S. and Kopeloff, N. (1948). Temporal and spatial distribution of changes during spontaneous seizures in monkey brain. Journal of Neurophysiology, 11: 377386.CrossRefGoogle ScholarPubMed
Weinberg, M.H. (1945). Fatigue as a precipitating factor in latent epilepsy. Journal of Nervous and Mental Disorders. 101: 251256.CrossRefGoogle Scholar
Welton, D.G. (1950). Exfoliative dermatitis and hepatitis due to phenobarbital. Journal of the American Medical Association. 143: 232234.CrossRefGoogle ScholarPubMed
Whitty, C.W.M.Lishman, W.A. and Fitzgibbon, J.P. (1964). Seizures induced by movement: a form of reflex epilepsy. Lancet. 1: 14031406.CrossRefGoogle Scholar
Wilder, B.J. and Morrell, F. (1967). Secondary epileptogenesis in the frog forebrain. Neurology (Minneapolis). 17: 10411051.CrossRefGoogle ScholarPubMed
Wilder, B.J. and Morrell, F. (1967). Cellular behaviour in secondary epileptic lesions. Neurology (Minneapolis). 17: 11931204.CrossRefGoogle ScholarPubMed
Wyrwicka, W. and Sterman, M.B. (1968). Instrumental conditioning of sensorimotor cortex EEG spindles in the waking cat. Physiology of Behaviour. 3: 703707.CrossRefGoogle Scholar
Zeilinski, J.J. (1974). Epileptics not in treatment. Epilepsia. 15: 203210.Google Scholar