Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-02T22:24:21.115Z Has data issue: false hasContentIssue false

Dicarboxylic Amino Acid Uptake in Normal, Friedreich's Ataxia, and Dicarboxylic Aminoaciduria Fibroblasts

Published online by Cambridge University Press:  18 September 2015

S.B. Melancon
Affiliation:
le Centre de Recherche Pédiatrique de l'Hôpital Ste-Justine, Montréal, l'Institut de Recherches Cliniques de Montréal, le Centre Hospitalier Universitaire de Sherbrooke
B. Grenier
Affiliation:
le Centre de Recherche Pédiatrique de l'Hôpital Ste-Justine, Montréal, l'Institut de Recherches Cliniques de Montréal, le Centre Hospitalier Universitaire de Sherbrooke
L. Dallaire
Affiliation:
le Centre de Recherche Pédiatrique de l'Hôpital Ste-Justine, Montréal, l'Institut de Recherches Cliniques de Montréal, le Centre Hospitalier Universitaire de Sherbrooke
M. Potier
Affiliation:
le Centre de Recherche Pédiatrique de l'Hôpital Ste-Justine, Montréal, l'Institut de Recherches Cliniques de Montréal, le Centre Hospitalier Universitaire de Sherbrooke
G. Fontaine
Affiliation:
le Centre de Recherche Pédiatrique de l'Hôpital Ste-Justine, Montréal, l'Institut de Recherches Cliniques de Montréal, le Centre Hospitalier Universitaire de Sherbrooke
B. Grignon
Affiliation:
le Centre de Recherche Pédiatrique de l'Hôpital Ste-Justine, Montréal, l'Institut de Recherches Cliniques de Montréal, le Centre Hospitalier Universitaire de Sherbrooke
G. Geoffroy
Affiliation:
le Centre de Recherche Pédiatrique de l'Hôpital Ste-Justine, Montréal, l'Institut de Recherches Cliniques de Montréal, le Centre Hospitalier Universitaire de Sherbrooke
B. Lemieux
Affiliation:
le Centre de Recherche Pédiatrique de l'Hôpital Ste-Justine, Montréal, l'Institut de Recherches Cliniques de Montréal, le Centre Hospitalier Universitaire de Sherbrooke
A. Barbeau
Affiliation:
le Centre de Recherche Pédiatrique de l'Hôpital Ste-Justine, Montréal, l'Institut de Recherches Cliniques de Montréal, le Centre Hospitalier Universitaire de Sherbrooke
Rights & Permissions [Opens in a new window]

Summary

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Glutamic and aspartic acid uptake was measured in skin fibroblasts from patients with Friedreich's Ataxia, dicarboxylic aminoaciduria, and normal individuals. The results showed no difference in uptake kinetics of either dicarboxylic amino acids between Friedreich's Ataxia and normal cells, but reduced uptake velocities in dicarboxylic aminoaciduria fibroblasts. Friedreich's Ataxia fibroblasts were, however, less calcium-dependant and more magnesium and phosphate-dependent than controls in glucose-free incubation mixture. This difference might be related to some degree of glucose intolerance by Friedreich's Ataxia fibroblasts in culture.

Type
Research Article
Copyright
Copyright © Canadian Neurological Sciences Federation 1979

References

Akeda, T. and Brody, T. M. (1969). The interaction between the chlorpromazine free radical and microsomal sodium — and potassium — activated adenosine triphos-phatase from rat brain. Mol. Pharmacol. 5, 605614.Google Scholar
Barbeau, A. (1978). Friedreich's ataxia 1978-an overview. Can. J. Neurol. Sci., 5, 161165.CrossRefGoogle ScholarPubMed
Booth, C. W. and Nadler, H. L. (1975). Neutral amino acid transport in cultivated human skin fibroblasts. Proc. Soc. Exp. Biol. Med. 148, 277282.CrossRefGoogle Scholar
Butterworth, R. F., Hamel, E., Lan-Dreville, F. and Barbeau, A. (1978a). Cerebellar ataxia produced by 3-acetyl pyridine in rats. Can. J. Neurol. Sci., 5, 131134.CrossRefGoogle Scholar
Butterworth, R. F., Hamel, E., Lan-Dreville, F. and Barbeau, A. (1978b). Effect of alloxan diabetes on cerebellar amino acids. Can. J. Neurol. Sci., 5, 135138.CrossRefGoogle ScholarPubMed
Chesney, R. W., Jax, K.D., Scriver, C. R. and Mohyuddin, F. (1978). Taurine Transport in mammalian kidney, in Taurine and Neurological Disorders, Barbeau, A. and Huxtable, R.. Ed., Raven Press, New York, p. 7393.Google Scholar
Griffin, D. M. and Szego, C. M. (1968). Adenosine 3', 5'-monophosphate stimulation of uterine amino acid uptake in vitro. Life Sci., 7, 10171023.CrossRefGoogle ScholarPubMed
Groth, V. and Rosenberg, L. E. (1972). Transport of dibasic amino acids, cystine and trypophan by cultured human fibro-blasts: Absence of a defect in cystinuria and Hartnup disease. J. Clin. Invest., 51, 21302142.CrossRefGoogle Scholar
Hertz, L., Schousboe, A., Boechler, N., Mukerji, S. and Federoff, S. (1978). Kinetic characteristics of the glutamate uptake into normal astrocytes in cultures. Neurochem. Res. 3, 114.CrossRefGoogle ScholarPubMed
Hillman, R. E. and Otto, E. F. (1974). Transport of L-isoleucine by cultured human fibroblasts. J. Biol. Chem. 249, 11: 34303435.CrossRefGoogle Scholar
Huxtable, R. and Chubb, J. (1977). Adrenergic stimulation of taurine transport by the heart. Science, 28, 409411.CrossRefGoogle Scholar
Jayashree, C. and Nayeemunnis, A. (1975). Neurochemical correlates of alloxan diabetes: brain aminotransferase heterogeneity in the rat. Life Sci., 17, 11591165.CrossRefGoogle ScholarPubMed
Kaye, C. I. and Nadler, H. L. (1976). Transport of L-cystine by cultivated skin fibroblast of normal subjects and patients with cystinosis. Pediat. Res. 10, 637641.CrossRefGoogle ScholarPubMed
Kilberg, M. S. and Neuhaus, O. W. (1977). Hormonal regulation of hepatic amino acid transport. J. Supramolecular Structure, 6, 191204.CrossRefGoogle ScholarPubMed
Kinzie, J. L., Grimme, N. L. and Alpers, D. H. (1976). Cyclic AMP-dependant amino acid uptake in intestine. Biochem. Pharmacol. 25, 27272731.CrossRefGoogle Scholar
Lemieux, B., Barbeau, A., Beron-Iade, V., Shapcott, D., Breton, G., Geoffroy, G. and Melançon, S. B. (1976). Amino acid metabolism in Fried-reich's ataxia. Can. J. Neurol. Sci., 3, 373378.CrossRefGoogle ScholarPubMed
Lemieux, B., Giguere, R., Barbeau, A., Melançon, S. B. and Shapcott, D. (1978). Taurine in cerebrospinaï fluid in Friedreich's ataxia. Can. J. Neurol. Sci. 5, 125130.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. and Randall, R. J. (1951). Protein measurement with the folin phenol reagent. J. Biol. Chem. 93, 265275.CrossRefGoogle Scholar
Macdonald, R. E., Lanyi, J. K. and Greene, R. V. (1977). Sodium-stimulated glutamate uptake in membrane vesicles of Escherichia coli: the role of ion gradients. Proc. Nati. Acad. Sci. USA, 74,8:3167-3170.CrossRefGoogle ScholarPubMed
Melançon, S. B., Dallaire, L., Lemieux, B., Robitaille, P. and Potier, M. (1977). Dicarboxylic amino-aciduria: an inborn error of amino acid conservation. J. Ped. 91, 3: 422427.CrossRefGoogle Scholar
Melançon, S. B., Grenier, B., Dallaire, L. and Potier, M. (1978). Amino acid transport systems in cultivated human skin fibroblasts: Characterization of the dicarboxylic amino acid uptake system. Abstract, VII th. International Congress of nephrology, Montreal.Google Scholar
Novogrodsky, A., Tate, S. T. and Meister, A. (1977). Uptake and utilization of L-glutamine by human lymphoid cells; relationship to 7-glutamyl transpeptidase activity. Biochem. Biophys. Res. Comm. 78, 1: 222229.CrossRefGoogle Scholar
Pellefigue, F., Debrohum Butler, J., Spielberg, S. P., Hollenberg, M. D., Goodman, S. I. and Schulman, J. D.Normal amino acid uptake by cultured human fibroblasts does not require gamma-glutamyl transpeptidase. Biochem. Biophys. Res. Comm. 73, 4: 9971002.Google Scholar
Perry, T. L., Applegarth, D. A., Evans, M. E. and Hansen, S. (1975). Metabolic studies of a family with massive formiminoglutamic aciduria. Pediatr. Res. 9, 117122.CrossRefGoogle ScholarPubMed
Perry, T. L., Stedman, D. and Hansen, S. (1968). A versatile lithium buffer elution system for single column automatic amino acid chromatography. Clin. Chim. Acta 38, 460466.Google ScholarPubMed
Phang, J. M., Downing, S. J. and Weiss, I. W. (1970). Cyclic AMP stimulation of amino acid uptake in bone and kidney. Biochim. Biophys. Acta 211, 605608.CrossRefGoogle ScholarPubMed
Poste, G., Papahadjopoulos, D., Jacobsond, K. and Vail, W. J. (1975). Effects of local anesthetics on membrane properties. II. Enhancement of the susceptibility of mammalian cells to agglutination by plant lectins. Biochim. Biophys. Acta 394, 520539.Google ScholarPubMed
Revsin, B. and Morrow, G. (1976). Glycine transport in normal and non-ketotic hyperglycinemic human diploid fibroblasts. Exptl. Cell Res. 100, 95103.CrossRefGoogle ScholarPubMed
Samuel, A. M. and Carey, M. D. (1978). Effect of chlorpromazine hydrochloride and its metabolites on Mg2+ and Na+, K+ ATPase activities of canalicular — enriched rat liver plasma membranes. Gastroenterology 74, 11831190.CrossRefGoogle Scholar
Schoenfeld, N., Epstein, O. and Atsmon, A. (1977). Inhibitory effect of membrane active compounds on the uptake of 14C-a-aminoisobutyric acid (AIB) in cultured chick embryo liver cells. Life Sci., 21, 329334.CrossRefGoogle ScholarPubMed
Seeman, P., Kawant, W. O. and Sanks, T. (1969). Membrane expansion of erythrocyte ghosts by tranquilizers and anesthetics. Biochim. Biophys. Acta 183, 499511.CrossRefGoogle ScholarPubMed
Tews, J. K., Wookcock, N. A. and Harper, A. E. (1970). Stimulation of amino acid transport in rat liver slices by epinephrine, glucagon and adenosine 3\ 5’ monophosphate. J. Biol. Chem. 245, 30263032.CrossRefGoogle ScholarPubMed
Weiss, I. W., Morgan, K. and Phang, J. M. (1972). Cyclic adenosine monophosphate stimulated transport of amino acids in kidney cortex. J. Biol. Chem. 247, 760764.CrossRefGoogle ScholarPubMed