Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-23T20:44:24.590Z Has data issue: false hasContentIssue false

Dexamethasone for Morbidity After Subdural Electrode Insertion – A Randomized Controlled Trial

Published online by Cambridge University Press:  02 December 2014

Ramesh L. Sahjpaul
Affiliation:
Division of Neurosurgery, University of Western Ontario, London, Ontario, Canada
Jeff Mahon
Affiliation:
Department of Clinical Neurological Sciences, and Department of Medicine, University of Western Ontario, London, Ontario, Canada
Samuel Wiebe
Affiliation:
Division of Neurology, University of Western Ontario, London, Ontario, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Invasive monitoring with subdural electrodes (SDE) for investigation of medically intractable epilepsy may be associated with undesirable immediate postoperative morbidity such as headache, nausea, vomiting, fever, and meningism. We undertook to evaluate the potential beneficial role of perioperative dexamethasone in reducing these symptoms.

Methods:

In a double-blind placebo controlled clinical trial 30 patients undergoing SDE insertion were randomized to receive either placebo or a course of dexamethasone beginning one hour prior to surgery and tapering to discontinue over 72 hours postoperatively. Pain, pain relief, nausea, nausea relief, temperature, and meningism were assessed regularly in the postoperative period, and analgesic, antipyretic, and antiemetic drug requirements were tabulated.

Results:

One patient was withdrawn from the dexamethasone group due to lack of data. With regards to postoperative pain, the direction of benefit favoured dexamethasone but a significant treatment by time interaction prevented further analysis of treatment effect. The dexamethasone group did have significantly lower temperatures and higher nausea relief scores. There was no statistically significant difference between the groups with regards to pain relief, nausea, and meningism scores. The beneficial effects of dexamethasone were delayed in onset, of limited duration, and not uniform over the observation period.

Conclusion:

Dexamethasone appears to have a role in reducing immediate morbidity following SDE insertion but its effect is not uniform in the postoperative period; it appears to be delayed in onset, and of limited duration. Further study is necessary to determine the ideal dosing schedule.

Résumé:

RÉSUMÉ: Introduction:

La surveillance effractive au moyen d.électrodes sous-durales (ÉSD) dans l.investigation de l.épilepsie réfractaire au traitement médical peut être associée à une morbidité postopératoire immédiate dont la céphalée, les nausées, les vomissements, l.hyperthermie et le méningisme. Nous avons évalué si la déxaméthasone administrée pendant la période périopératoire pouvait réduire ces symptômes.

Méthodes:

Trente patients qui devaient subir l.insertion d.ÉSD ont été répartis de façon aléatoire au traitement à la déxaméthasone une heure avant la chirurgie et à dose décroissante dans les 72 heures après la chirurgie ou à recevoir un placebo. La douleur, le soulagement de la douleur, les nausées, le soulagement des nausées, la température et le méningisme ont été évalués régulièrement en période postopératoire et les besoins en médicaments analgésiques, antipyrétiques et antiémétiques ont été notés.

Résultats:

Un patient a été exclu du groupe recevant la dexaméthasone à cause de données manquantes. En ce qui concerne la douleur postopératoire, la dexaméthasone semblait être bénéfique, bien que les données n.aient pu être analysées de façon plus poussée à cause d.une interaction entre le traitement et le temps. Le groupe recevant de la dexaméthasone avait une température significativement plus basse ainsi qu.un meilleur score de soulagement des nausées. La différence entre les groupes quant au soulagement de la douleur, aux nausées et au méningisme n.atteignait pas le seuil de la significativité. Les effets bénéfiques de la dexaméthasone avaient un début tardif, une durée limitée et étaient variables pendant la période d.observation.

Conclusion:

La dexaméthasone semble jouer un rôle dans la réduction immédiate de la morbidité après l.insertion d.ÉSD mais son effet est variable pendant la période postopératoire: le début est retardé et l.effet est d.une durée limitée. D.autres etudes sont nécessaires pour déterminer quel est le schéma posologique idéal.

Type
Research Article
Copyright
Copyright © The Canadian Journal of Neurological 2003

References

1. Wyler, AR. Chronic intracranial monitoring techniques. In: Wyler, AR, Hermann, BP, (Eds). The Surgical Management of Epilepsy. Stoneham, MA: Butterworth-Heinemann, 1994: 6269.Google Scholar
2. Wyler, AR. Focal cortical resections. In: Wyler, AR, Hermann, BP, (Eds). The Surgical Management of Epilepsy. Stoneham, MA: Butterworth-Heinemann, 1994: 129138.Google Scholar
3. Carmel, PW, Fraser, RAR, Stein, BM. Aseptic meningitis following posterior fossa surgery in children. J Neurosurg 1974; 41: 4448.Google Scholar
4. Foulkes, GD, Robinson, JS Jr. Intraoperative dexamethasone irrigation in lumbar microdiscectomy. Clin Orthop 1990: 224228.Google Scholar
5. King, JS. Dexamethasone – a helpful adjunct in management after lumbar discectomy. Neurosurgery 1984; 14(6): 697700.Google Scholar
6. Glasser, RS, Knego, RS, Delashaw, JB, Fessler, RG. The perioperative use of corticosteroids and bupivacaine in the management of lumbar disc disease. J Neurosurg 1993; 78: 383387.Google Scholar
7. Layne, MH, Bilsky, MH. Epidural steroids, postoperative morbidity, and recovery in patients undergoing microsurgical lumbar discectomy. J Neurosurg 1992; 77: 9095.Google Scholar
8. Henzi, I, Walder, B, Tramer, MR. Dexamethasone for the prevention of postoperative nausea and vomiting. Anesth Analg 2000; 90: 186194.Google Scholar
9. Guyatt, GH, Berman, LB, Townsend, M, Taylor, DW. Should study subjects see their previous response? J Chronic Dis 1985; 38(12): 10031007.Google Scholar
10. Price, DD, McGrath, PA, Rafii, A, Buckingham, B. The validation of visual analogue scales as ratio scale measures for chronic and experimental pain. Pain 1983; 17: 4556.CrossRefGoogle ScholarPubMed
11. Melzack, R, Katz, J. Pain measurement in persons in pain. In: Wall, PD, Melzack, R, (Eds). Textbook of Pain. 3rd ed. New York 1994: Churchill Livingstone: 337351.Google Scholar
12. Huskisson, EC. Measurement of pain. Lancet 1974; 2: 11271131.Google Scholar
13. McQuay, HJ, Moore, A. Pain measurement, study design, and validity. In: McQuay, HJ, Moore, A, (Eds). An evidence-based resource for pain relief. Oxford: Oxford University Press 1998: 1418.Google Scholar
14. Huskisson, EC, Wojtulewski, JA, Berry, H, et al. Treatment of rheumatoid arthritis with fenoprofen: comparison with aspirin. Br Med J 1974; 1(900): 176180.Google Scholar
15. Mattson, RH, Cramer, JA, Collins, JF, et al. Comparison of carbamazepine, phenobarbital, phenytoin, and primidone in partial and secondary generalized tonic-clonic seizures. N Engl J Med 1985; 313: 145151.Google Scholar
16. Wiebe, S, Blume, WT, Girvin, JP, Eliasziw, M. A randomized, controlled trial of surgery for temporal-lobe epilepsy. N Engl J Med 2001; 345: 311318.Google Scholar
17. Spencer, SS, Sperling, MR, Shewmon, DA. Intracranial electrodes. In: Engel, J Jr., Pedley, TA, (Eds). Epilepsy. A Comprehensive Textbook. Philadelphia: Lippincott-Raven 1997: 17191747.Google Scholar
18. Espinosa, J, Olivier, A, Andermann, F, et al. Morbidity of chronic recording with intracranial depth electrodes in 170 patients. Stereotact Funct Neurosurg 1995; 63: 6365.Google Scholar
19. Ross, DA, Henry, TR. Morbidity associated with subdural electrodes (letter; comment). J Neurosurg 1991; 75:832.Google Scholar
20. Seigel, AM, Roberts, DW, Thadani, VM, et al. The role of intracranial electrode reevaluation in epilepsy patients after failed initial invasive monitoring. Epilepsia 2000; 41: 571580.Google Scholar
21. Van Veelen, CW, Debets, RM. Functional neurosurgery in the treatment of epilepsy in the Netherlands. Aspects of presurgical evaluation and the contribution of subdural and stereotactically implanted depth electrodes in the Dutch Workgroup for Functional Surgery. Acta Neurochir (Wien) 1993; 124: 710.Google Scholar
22. Wiggins, GC, Elisevich, K, Smith, BJ. Morbidity and infection in combined subdural grid and strip electrode investigation for intractable epilepsy. Epilepsy Res 1999; 37: 7380.Google Scholar
23. Wyler, AR, Walker, G, Somes, G. The morbidity of long-term seizure monitoring using subdural strip electrodes. J Neurosurg 1991; 74: 734737.CrossRefGoogle ScholarPubMed
24. Behrens, E, Zentner, J, van Roost, D, et al. Subduraland depth electrodes in the presurgical evaluation of epilepsy. Acta Neurochir (Wien) 1994; 128: 8487.Google Scholar
25. Penfield, W, Jasper, H. Epilepsy and the functional anatomy of the human brain. Boston: Little, Brown, 1954.Google Scholar
26. Bloomstedt, GC. Postoperative aseptic meningitis. Acta Neurochir (Wien) 1987; 89: 34.CrossRefGoogle Scholar
27. Hammes, EM Jr. Reaction of the meninges to blood. Arch Neurol Psychiatry 1944; 52: 505514.Google Scholar
28. Mathiesen, T, Fuchs, D, et al. Increased CSF neopterin levels in subarachnoid hemorrhage. J Neurosurg 1990; 73(1): 6971.Google Scholar
29. Oestergaard, JR, Kristensen, BO, Svehag, S, et al. Immune complexes and complement activation following rupture of intracranial saccular aneurysms. J Neurosurg 1987; 66: 891897.CrossRefGoogle Scholar
30. Pelletieri, L, Nilsson, B, et al. Serum immunocomplexes in patients with subarachnoid hemorrhage. Neurosurgery 1986; 19: 767.Google Scholar
31. Schimmer, BP, Parker, KL. ACTH: adrenocortical steroids and their synthetic analogs. In: Hardman, JG, Limbird, LH, Molinoff, PB, Ruddan, RW, Goodman Gilman, A, (Eds). Goodman, & Gilman’s, The Pharmacologic Basis of Therapeutics (9th ed). New York: McGraw Hill 1985: 14591486.Google Scholar
32. Wang, JJ, Ho, ST, Liu, YH, et al. Dexamethasone reduces nausea and vomiting after laparoscopic cholecystectomy. Br J Anaesth 1999; 83: 772775.Google Scholar
33. Wang, JJ, Ho, ST, Tzeng, JI, Tang, CS. The effect of timing of dexamethasone administration on its efficacy as a prophylactic antiemetic for postoperative nausea and vomiting. Anesth Analg 2000; 91: 136139.Google Scholar
34. Waagner, DC, Kennedy, WA, Hoyt, MJ. Lack of adverse effects of dexamethasone therapy in aseptic meningitis. Ped Inf Dis J 1990; 12: 922923.Google Scholar
35. Liu, K, Hsu, CC, Chia, YY. Effect of dexamethasone on postoperative emesis and pain. Br J Anaes 1998; 80: 8586.Google Scholar
36. Pappas, ALS, Sukhani, R, Hotaling, AJ, et al. The effects of pre-operative dexamethasone on the immediate and delayed postoperative morbidity in children undergoing adenotonsillectomy. Anesth Analg 1998; 87: 5761.Google Scholar
37. Wang, JJ, Ho, ST, Liu, HS, Ho, CM. Prophylactic antiemetic effect of dexamethasone in women undergoing ambulatory laparoscopic surgery. Br J Anaesth 2000; 84 (4): 459462.Google Scholar
38. Freidman, LM, Furberg, CD, DeMets, DL. Issues in data analysis. In: Friedman, LM, Furberg, CD, DeMets, DL, (Eds). Fundamentals of Clinical Trials, 3rd ed. St Louis, Missouri, Mosby-Year Book Inc. 1996: 284322.Google Scholar