Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-23T21:00:12.113Z Has data issue: false hasContentIssue false

Critical Appraisal of Experimental Radiation Modalities for Malignant Astrocytomas

Published online by Cambridge University Press:  18 September 2015

N.J. Laperriere*
Affiliation:
Department of Radiation Oncology, Princess Margaret Hospital, Toronto
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The management of patients with supratentorial malignant astrocytomas has remained a major problem. Patients continue to die from a lack of local control in 90% of cases despite an improvement of median survival seen with the use of postoperative radiation therapy. Because of this, there has been considerable interest in exploring novel ways of possibly improving results. This paper reviews the rationale and clinical results with the use of altered fractionation schemes, brachytherapy, radiation sensitizers, hyperthermia, particle therapy, and radiosurgery in the treatment of these patients. Currently, there is no demonstrated advantage with the use of these experimental modalities in the initial management of patients. There would appear to be some benefit for selected patients who are treated with brachytherapy at recurrence, but its efficacy as part of initial management remains to be determined in ongoing randomized prospective trials.

Résumé:

RÉSUMÉ:

Le traitement des patients porteurs d'astrocytomes malins sus-tentoriels demeure un problème majeur. Ces patients continuent de mourir par manque de contrôle de la tumeur locale dans 90% de cas, malgré une amélioration de la survie médiane constatée avec l'emploi de la radiothérapie postopératoire. C'est ce qui a suscité un vif intérêt dans l'exploration de nouveaux moyens pouvant possiblement améliorer les résultats. Cet article revoit la justification et les résultats cliniques obtenues avec l'utilisation de plans modifiés de fractionnement de la radiothérapie, de brachythérapie, de radio-sensibilisateurs, d'hyperthermie, de thérapie particulaire, et de radiochirurgie dans le traitement de ces patients. Il n'y a actuellement aucune preuve que l'utilisation de ces modalités thérapeutiques expérimentales soit avantageuse dans la conduite initiale du traitement chez ces patients. Actuellement, il semblerait y avoir un réel bénéfice pour un groupe sélectionné de patients qui sont traités par brachythérapie au moment d'une récidive. Cependant, l'efficacité de cette modalité thérapeutique dans la conduite initiale du traitement reste à déterminer par des études prospectives randomisées présentement encours.

Type
Neurosurgical Symposium - William S. Keith, Visiting Professorship in Neurosurgery
Copyright
Copyright © Canadian Neurological Sciences Federation 1990

References

REFERENCES

1. Russell, DS, Rubinstein, LJ Pathology of tumours of the nervous system. Fourth edition. London: Edward Arnold Ltd 1977; 146282.Google Scholar
2. Walker, MD, Alexander, E, Hunt, WE, et al. Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas: a cooperative clinical trial. J Neurosurg 1978; 49: 333343.CrossRefGoogle ScholarPubMed
3. Walker, MD, Green, SB, Byar, DP, et al. Randomized comparisons of radiotherapy and nitrosources for the treatment of malignant glioma after surgery. N Engl J Med 1980; 303: 13231329.CrossRefGoogle ScholarPubMed
4. Kornblith, PL, Walker, M Chemotherapy for malignant gliomas. J Neurosurg 1988; 68: 117.CrossRefGoogle ScholarPubMed
5. Hochberg, FH, Pruitt, A. Assumptions in the radiotherapy of glioblastoma. Neurology 1980; 30: 907911.CrossRefGoogle ScholarPubMed
6. Bashir, R, Hochberg, F, Oot, R Regrowth patterns of glioblastoma multiforme related to planning of interstitial brachytherapy radiation fields. Neurosurgery 1988; 23: 2730.CrossRefGoogle ScholarPubMed
7. Choucair, AK, Levin, VA, Gutin, PH, et al. Development of multiple lesions during radiation therapy and chemotherapy in patients with gliomas. J Neurosurg 1986; 65: 654658.CrossRefGoogle ScholarPubMed
8. Thames, HD, Hendry, JH Fractionation in radiotherapy. London: Taylor & Francis Ltd 1987; 138169.Google Scholar
9. Simpson, WJ, Platts, ME Fractionation study in the treatment of glioblastoma multiforme. Int J Radiat Oncol Biol Phys 1976; 1: 639644.CrossRefGoogle ScholarPubMed
10. Keim, H, Potthoff, PC, Schmidt, K, et al. Survival and quality of life after continuous accelerated radiotherapy of glioblastoma. Radiother Oncol 1987; 9: 2126.CrossRefGoogle Scholar
11. Thames, HD, Hendry, JH Fractionation in radiotherapy. London: Taylor & Francis Ltd 1987; 5399.Google Scholar
12. Palcic, B, Skarsgard, LD Reduced oxygen enhancement ratio at low doses of ionizing radiation. Radiat Res 1984; 100: 328339.CrossRefGoogle ScholarPubMed
13. Douglas, BG, Worth, AJ Superfractionation in glioblastoma multiforme — results of a phase II study. Int J Radiat Oncol Biol Phys 1982; 8: 17871794.CrossRefGoogle ScholarPubMed
14. Payne, DG, Simpson, WJ, Keen, C, et al. Malignant astrocytoma: hyperfractionated and standard radiotherapy with chemotherapy in a randomized prospective clinical trial. Cancer 1982; 50: 23012306.3.0.CO;2-J>CrossRefGoogle Scholar
15. Green, SB, Gyar, DP, Stricke, TA, et al. Randomized comparisons of BCNU, streptozotocin, radiosensitizer, and fractionation in the postoperative treatment of malignant glioma (Study 7702). Proc Am Soc Clin Oncol 1984; 3: 260 (Abstract).Google Scholar
16. Shin, KH, Urtasun, RC, Rulton, D, et al. Multiple daily fractionated radiation therapy and misonidazole in the management of malignant astrocytoma: a preliminary report. Cancer 1985; 56: 758760.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
17. Nelson, DF, Urtasun, RC, Saunders, WM, et al. Recent and current investigations of radiation therapy of malignant gliomas. Sem Oncol 1986; 13: 4655.Google ScholarPubMed
18. Bernstein, M. Gutin, PH Interstitial irradiation of brain tumors: a review. Neurosurgery 1981; 9: 741750.CrossRefGoogle ScholarPubMed
19. Leibel, SA, Gutin, PH, Wara, WM, et al. Survival and quality of life after interstitial implantation of removable high-activity iodine-125 sources for the treatment of patients with recurrent malignant gliomas. Int J Radiation Oncology Biol Phys 1989; 17: 11291139.CrossRefGoogle ScholarPubMed
20. Bernstein, M, Laperriere, NJ, Leung, P, et al. Interstitial brachytherapy for malignant brain tumors: preliminary results. Neurosurgery, in press.Google Scholar
21. Hall, EJ Radiobiology for the radiologist. Third edition. New York: JB Lippincott Co 1988; 179200.Google Scholar
22. Chang, CH Hyperbaric oxygen and radiation therapy in the management of glioblastoma. Natl Cancer Inst Monogr 1977; 46: 163169.Google ScholarPubMed
23. Urtasun, R, Band, P, Chapman, JD, et al. Radiation and high-dose metronidazole in supratentorial glioblastomas. N Engl J Med 1976; 294: 13641367.CrossRefGoogle ScholarPubMed
24. Urtasun, R, Feldstein, ML, Partington, J, et al. Radiation and nitroimidazoles in supratentorial high grade gliomas: a second clinical trial. Br J Cancer 1982; 46: 101108.CrossRefGoogle ScholarPubMed
25. Bleehan, NM, Wiltshire, CR, Plowman, PN, et al. A randomized study of misonidazole and radiotherapy for grade 3 and 4 cerebral astrocytoma. Br J Cancer 1981; 43: 436442.CrossRefGoogle Scholar
26. EORTC brain tumor group. Misonidazole in radiotherapy of supratentorial malignant brain gliomas in adult patients: a randomized double-blind study. Eur J Cancer Clin Oncol 1983; 19: 3942.CrossRefGoogle Scholar
27. Stadler, B, Karcher, KH, Kogelnik, HD, et al. Misonidazole and irradiation in the treatment of high-grade astrocytomas: further report of the Vienna study group. Int J Radiation Oncology Biol Phys 1984; 10: 17131717.CrossRefGoogle ScholarPubMed
28. Hatlevoll, R, Lindegaard, K, Hagen, S, et al. Combined modality treatment of operated astrocytomas grade 3 and 4. A prospective and randomized study of misonidazole and radiotherapy with two different radiation schedules and subsequent CCNU chemotherapy. Stage II of a prospective multicenter trial of the Scandinavian Glioblastoma Study Group. Cancer 1985; 56: 4147.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
29. Nelson, DF, Diener-West, M, Weinstein, AS, et al. A randomized comparison of misonidazole sensitized radiotherapy plus BCNU and radiotherapy plus BCNU for treatment of malignant glioma after surgery: final report of an RTOG study. Int J Radiation Oncology Biol Phys 1986; 12: 17931800.CrossRefGoogle ScholarPubMed
30. Deutsch, M, Green, SB, Strike, TA, et al. Results of a randomized trial comparing BCNU plus radiotherapy, streptozotocin plus radiotherapy, BCNU plus hyperfractionated radiotherapy, and BCNU following misonidazole plus radiotherapy in the postoperative treatment of malignant glioma. Int J Radiation Oncology Biol Phys 1989; 16: 13891396.CrossRefGoogle ScholarPubMed
31. Brown, JM Clinical trials of radiosensitizers: what should we expect? Int J Radiation Oncology Biol Phys 1984; 10: 425429.CrossRefGoogle ScholarPubMed
32. Coleman, CN, Wasserman, TH, Urtasun, RC, et al. Phase I trial of the hypoxic cell radiosensitizer SR-2508: the results of the five to six week drug schedule. Int J Radiation Oncology Biol Phys 1986; 12: 11051108.CrossRefGoogle ScholarPubMed
33. Newman, HFV, Bleehen, NM, Ward, R, et al. Hypoxic cell radiosensitizers in the treatment of high grade gliomas: a new direction using combined RO 03–8799 (pimonidazole) and SR 2508 (etanidazole). Int J Radiation Oncology Biol Phys 1988; 15: 677684.CrossRefGoogle Scholar
34. Dische, S, Saunders, MI, Dunphy, EP, et al. Concentrations achieved in human tumors after administration of misonidazole, SR–2508 and RO 03–8799. Int J Radiation Oncology Biol Phys 1986; 12: 11091111.CrossRefGoogle ScholarPubMed
35. Newman, HFV, Bleeken, NM, Workman, P A phase I study of the combination of two hypoxic cell radiosensitizers, RO 03–8799 and SR–2508: toxicity and pharmacokinetics. Int J Radiation Oncology Biol Phys 1986; 12: 11131116.CrossRefGoogle ScholarPubMed
36. Hoshino, T Radiosensitization of brain tumours. In: Deely, TJ, ed. Modern Radiotherapy and Oncology. London: Butterworths 1974; 170183.Google Scholar
37. Jackson, D, Kinsella, T, Rowland, J, et al. Halogenated pyrimidines as radiosensitizers in the treatment of glioblastoma multiforme. Am J Clin Oncol (CCT) 1987; 10: 437443.CrossRefGoogle ScholarPubMed
38. Greenberg, HS, Chandler, WF, Diaz, RF, et al. Intra-arterial bromo-deoxyuridine radiosensitization and radiation in treatment of malignant astrocytomas. J Neurosurg 1988; 69: 500505.CrossRefGoogle Scholar
39. Busch, W Uber den Einfluss, welchen heftigere erysipein zuweillen auf organisierte neubildunge ausben. Verhandlungen des naturlistorischen Vereines der preussischen Rheinlande und Westphalens 1866; 23: 28.Google Scholar
40. Hall, EJ Radiobiology for the Radiologist. Third edition. New York: JB Lippincott Co 1988; 293330.Google Scholar
41. Salcman, M, Samaras, GM Hyperthermia for brain tumors: biophysical rationale. Neurosurgery 1981; 9: 327335.CrossRefGoogle ScholarPubMed
42. Silberman, AW, Rand, RW, Storm, FK, et al. Phase I trial of thermochemotherapy for brain malignancy. Cancer 1985; 56: 4856.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
43. Silberman, AW, Rand, RW, Krag, DN, et al. Effect of localized magnetic-induction hyperthermia on the brain. Cancer 1986; 57: 14011404.3.0.CO;2-2>CrossRefGoogle Scholar
44. Wen, HL. Dahele, JS, Mehal, ZD, et al. Application of invasive microwave hyperthermia for the treatment of gliomas. J Neurooncol 1988; 6: 93101.CrossRefGoogle ScholarPubMed
45. Tanaka, R, Kim, CH, Yamada, N, et al. Radiofrequency hyperthermia for malignant brain tumors: preliminary results of clinical trials. Neurosurgery 1987; 21: 478483.Google ScholarPubMed
46. Roberts, DW, Strohbehn, JW, Coughlin, CT, et al. Iridium-192 brachytherapy in combination with interstitial microwave-induced hyperthermia for malignant glioma. App. Neurophysiol 1987; 50: 287291.Google ScholarPubMed
47. Roberts, DW, Coughlin, CT, Wong, TZ, et al. Interstitial hyperthermia and iridium brachytherapy in treatment of malignant glioma. J Neurosurg 1986; 64: 581587.CrossRefGoogle ScholarPubMed
48. Salcman, M, Samaras, GM. Interstitial microwave hyperthermia for brain tumors. J Neurooncol 1983; 1: 225236.CrossRefGoogle ScholarPubMed
49. Winter, A, Laing, J. Paglione, R, et al. Microwave hyperthermia for brain tumors. Neurosurgery 1985; 17–387–399.Google ScholarPubMed
50. Parker, RG, Berry, HC, Gerdes, AJ, et al. Fast neutron beam radiotherapy of glioblastoma multiforme. Am J Roentgenol 1976; 127: 331335.CrossRefGoogle ScholarPubMed
51. Laramore, GE, Griffin, TW, Gerdes, AJ, et al. Fast neutron and mixed (neutron/photon) beam teletherapy for grades III and IV astrocytomas. Cancer 1978; 42: 96103.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
52. Catterall, M, Bloom, JG, Ash, DV, et al. Fast neutrons compared with megavoltage X-rays in the treatment of patients with supratentorial glioblastoma: a controlled pilot study. Int J Radiat Oncol Biol Phy 1980; 6: 261266.CrossRefGoogle ScholarPubMed
53. Griffin, TW, Davis, R, Laramore, G, et al. Fast neutron radiation therapy for glioblastoma multiforme. Am J Clin Oncol 1983; 6: 661667.CrossRefGoogle ScholarPubMed
54. Duncan, W, McLelland, J. Jack, WJL, et al. Report of a randomized pilot study of the treatment of patients with supratentorial gliomas using neutron irradiation. Br J Radiol 1986; 59: 373377.CrossRefGoogle ScholarPubMed
55. Duncan, W, McLelland, J, Jack, WJL, et al. The results of a randomized trial of mixed-schedule (neutron/photon) irradiation in the treatment of supratentorial grade III and grade IV astrocytoma. Br J Radiol 1986; 59: 379383.CrossRefGoogle ScholarPubMed
56. Duncan, W, McLelland, J, Davey, P, et al. A phase I study of mixed (neutron/photon) irradiation using two fractions per day in the treatment of high-grade astrocytomas. Br J Radiol 1986; 59: 441444.CrossRefGoogle Scholar
57. Kurup, PD, Pajak, TF, Hendrickson, FR, et al. Fast neutrons and misonidazole for malignant astrocytomas. Int J Radiat Oncol Biol Phys 1985; 11: 679686.CrossRefGoogle ScholarPubMed
58. Laramore, GE, Diener-West, M, Griffin, TW, et al. Randomized neutron dose searching study for malignant gliomas of the brain: results of an RTOG study. Int J Radiat Oncol Biol Phys 1988; 14: 10931102.CrossRefGoogle ScholarPubMed
59. Suit, HD, Griffin, TW, Castro, JR, et al. Particle radiation therapy research plan. Am J Clin Oncol 1988; 11: 330341.CrossRefGoogle ScholarPubMed
60. Farr, LE, Sweet, WH, Robertson, JS, et al. Neutron capture therapy with boron in the treatment of glioblastoma multiforme. Am J Roentgenol 1954; 71: 279293.Google ScholarPubMed
61. Asbury, AK, Ojemann, RG, Nielsen, SL, et al. Neuropathologic study of fourteen cases of malignant brain tumor treated by boron-10 slow neutron capture radiation. J Neuropathol Exp Neurol 1972; 31: 278303.CrossRefGoogle ScholarPubMed
62. Hatanaka, H Introduction. In: Hanataka, H, ed. Boron-Neutron Capture Therapy For Tumors. Japan: Nishimura Co Ltd 1986; 128.Google Scholar
63. Hall, EJ Radiobiology for the radiology. Third edition. New York: JB Lippincott Co 1988; 261292.Google Scholar
64. von Essen, CF, Bagshaw, MA, Bush, SE, et al. Long-term results of pion therapy at Los Alamos. Int J Radiat Oncol Biol Phys 1987; 13: 13891398.CrossRefGoogle ScholarPubMed
65. Schmitt, G, von Essen, CF, Greiner, R, et al. Review of the SIN and Los Alamos pion trials. Radiat Res 1985; 104: S-272-S-278.CrossRefGoogle Scholar
66. Goodman, GB, Dixon, P, Lam, GKY, et al. Preparatory clinical studies of pi-mesons at TRIUMF. Radiat Res 1985; 104: S-279-S-284.CrossRefGoogle Scholar
67. Goodman, GB, personal communication 1987.Google Scholar
68. Castro, JR, Saunders, WM, Austin-Seymour, MM, et al. A phase I–II trial of heavy charged particle irradiation of malignant glioma of the brain: a Northern California Oncology Group study. Int J Radiat Oncol Biol Phys 1985; 11: 17951800.CrossRefGoogle ScholarPubMed
69. Austin-Seymour, M, Munzenrider, JE, Goitein, M, et al. Progress in low-LET heavy particle therapy: intracranial and paracranial tumors and uveal melanomas. Radiat Res 1985; 104: S219–S226.CrossRefGoogle Scholar
70. Leksell, L Stereotactic radiosurgery. J Neurol Neurosurg Psychiatry 1983; 46: 797803.CrossRefGoogle ScholarPubMed
71. Bradshaw, JD Special report. The stereotactic radiosurgery unit in Sheffield. Clinical Radiology 1986; 37: 277279.CrossRefGoogle Scholar
72. Fabrikant, JI, Lyman, JT, Hosobuchi, Y Stereotactic heavy-ion Bragg peak radiosurgery for intra-cranial vascular disorders: method for treatment of deep arteriovenous malformations. Br J Radiol 1984; 57: 479490.CrossRefGoogle ScholarPubMed
73. Colombo, F, Benedetti, A, Pozza, F, et al. External stereotactic irradiation by linear accelerator. Neurosurgery 1985; 16: 154160.Google ScholarPubMed
74. Podgorsak, EB, Olivier, A, Pia, M, et al. Dynamic stereotactic radio-surgery. Int J Radiation Oncology Biol Phys 1988; 14: 115126.CrossRefGoogle Scholar
75. Kjellberg, RN Stereotactic Bragg peak proton beam radiosurgery for cerebral arteriovenous malformations. Ann Clin Res 1986; 18 Suppl 47: 1719.Google Scholar
76. Fabrikant, JI, Lyman, JT, Frankel, KA Heavy charged-particle Bragg peak radiosurgery for intracranial vascular disorders. Radiat Res 1985; 104: S244–S258.CrossRefGoogle Scholar
77. Degerblad, M, Rahn, T, Bergstrand, G, et al. Long-term results of stereotactic radiosurgery to the pituitary gland in Cushing’s disease. Acta Endocrinologica 1986; 112: 310314.CrossRefGoogle Scholar
78. Noren, G. Arndt, J, Hindmarsh, T. Stereotactic radiosurgery in cases of acoustic neurinoma: further experiences. Neurosurgery 1983; 13: 1222.CrossRefGoogle ScholarPubMed
79. Sturm, V, Kober, B, Hover, KH, et al. Stereotactic percutaneous single dose irradiation of brain metastases with a linear accelerator. Int J Radiation Oncology Biol Phys 1987; 13: 279282.CrossRefGoogle ScholarPubMed
80. Pozza, F, Colombo, F, Chierego, G, et al. Low-grade astrocytomas: treatment with unconventionally fractionated external beam stereotactic radiation therapy. Radiology 1989; 171: 565569.CrossRefGoogle ScholarPubMed
81. Shapiro, WR Therapy of adult malignant brain tumors: what have the clinical trials taught us? Sem Oncol 1986; 13: 3845.Google ScholarPubMed
82. Withers, HR Neutrons and other clinical trials: impossible dreams? Int J Radiat Oncol Biol Phys 1987; 13: 19671970.CrossRefGoogle ScholarPubMed
83. Burger, PC, Heinz, ER, Shibata, T, et al. Topographic anatomy and CT correlations in the untreated glioblastoma multiforme. App Neurophysiol 1983, 46: 698704.Google Scholar
84. Halperin, EC, Bentel, G, Heinz, ER, et al. Radiation therapy treatment planning in supratentorial glioblastoma multiforme: an analysis based on post mortem topographic anatomy with CT correlations. Int J Radiation Oncology Biol Phys 1989; 17: 13471350.CrossRefGoogle ScholarPubMed
85. Halperin, EC, Burger, PC, Bullard, DE The fallacy of the localized supratentorial malignant glioma. Int J Radiat Oncol Biol Phys 1988; 15: 505509.CrossRefGoogle ScholarPubMed
86. Kelly, PJ, Daumas-Duport, C, Kispert, DB, et al. Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 1987; 66: 865874.CrossRefGoogle ScholarPubMed
87. Gerweck, LE, Kornblith, PL, Burlett, BS, et al. Radiation sensitivity of cultured human glioblastoma cells. Radiology 1977; 125: 231234.CrossRefGoogle ScholarPubMed
88. Fertil, B, Malaise, EP. Intrinsic radiosensitivity of human cell lines is correlated with radioresponsiveness of human tumors: analysis of 101 published survival curves. Int J Radiation Oncology Biol Phys 1985; 11: 16991707.CrossRefGoogle ScholarPubMed
89. Malaise, EP, Fertil, B, Chavaudra, N, et al. Distribution of radiation sensitivities for human tumor cells of specific histological types: comparison of in vitro to in vivo data. Int J Radiation Oncology Biol Phys 1986; 12: 617624.CrossRefGoogle ScholarPubMed
90. James, CD, Carlbom, E, Dumanski, JP, et al. Clonal genomic alterations in glioma malignancy stages. Cancer Research 1988; 48: 55465551.Google ScholarPubMed
91. Rutka, JT, Rosenblum, ML, Stern, R, et al. Isolation and partial purification of growth factors with TGF-like activity from human malignant gliomas. J Neurosurg 1989; 71: 875883.CrossRefGoogle ScholarPubMed