Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T08:24:15.913Z Has data issue: false hasContentIssue false

Cervical Artery Dissection is Associated with Widened Aortic Root Diameter

Published online by Cambridge University Press:  18 September 2015

Vladimir Skljarevski*
Affiliation:
Divisions of Neurology, Ottawa Hospital- General Site, University of Ottawa, Ottawa.
Michele Turek
Affiliation:
Cardiology, Ottawa Hospital- General Site, University of Ottawa, Ottawa.
Antoine M. Hakim
Affiliation:
Divisions of Neurology, Ottawa Hospital- General Site, University of Ottawa, Ottawa.
*
Division of Neurology, Ottawa Hospital-General Site, , 501 Smyth Road, Ottawa, Ontario, Canada K1H 8L6
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

Dissection of the internal carotid and vertebral arteries is a well recognized cause of stroke, especially in the middle-aged. The exact etiology of this condition is controversial. According to one theory there is an underlying vasculopathy originating from disturbed development of the neural crest. The neural crest gives rise to several tissues, including the tunica media of large cervical arteries and the outflow tract of the heart. We attempted to test the theory that developmental abnormality at the level of the neural crest may play a role in dissection of the large cervical arteries.

Methods:

We designed a retrospective case control study. By means of transthoracic echocardiography we measured the aortic root diameter in a group of patients with radiographically determined dissection of at least one large artery in the neck. The results were compared to a control group.

Results:

In comparison to age matched controls, male patients were found to have a significantly larger aortic root. Although a similar trend was apparent in females, the difference between the patient and control group of females was not statistically significant.

Conclusions:

Patients with cervical artery dissections may have other abnormalities in organs arising from the neural crest. A larger prospective clinical study and further research are needed to establish a firm link between dissection of the cervical arteries and abnormalities in other organs.

Résumé:

RÉSUMÉ: Objectif:

La dissection de la carotide interne et des artères vertébrales est une cause bien connue d'accident vasculaire cérébral, surtout dans la population d'âge moyen. L'étiologie exacte de cette condition est controversée. Une hypothèse propose qu'il existe une vasculopathie sous-jacente suite à un développement anormal de la crête neurale. La crête neurale donne naissance à plusieurs tissus, incluant la media des grosses artères cervicales et aux voies de chasse du coeur. Nous avons tenté de vérifier l'hypothèse selon laquelle une anomalie du développement au niveau de la crête neurale pourrait jouer un rôle dans la dissection des artères cervicales de gros calibre.

Méthodes:

Il s'agit d'une étude cas/témoins. Nous avons mesuré, au moyen de Péchocardiographie transthoracique, le diamètre de l'orig¬ine de l'aorte chez un groupe de patients ayant une dissection prouvée radiologiquement d'au moins une artère du cou de gros calibre. Les résultats ont été comparés à ceux obtenus chez un groupe contrôle

Résultats:

Dans le groupe expérimental d'hommes, l'origine de l'aorte était significativement plus large que dans le groupe contrôle apparié pour l'âge. Bien qu'une tendance était évidente chez les femmes, la différence entre le groupe expérimental et le groupe témoin n'était pas significative.

Conclusions:

Il est possible que les patients qui ont une dissection d'une artère cervicale aient également d'autres anomalies des organes qui proviennent de la crête neurale. Une étude prospective de plus grande envergure et des recherches plus poussées seront nécessaires pour établir un lien entre la dissection des artères cervicales et des anomalies d'autres organes.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1998

References

REFERENCES

1. Hart, RG, Easton, JD. Dissections. Stroke 1985; 16: 925927.Google Scholar
2. Hart, RG. Vertebral artery dissection. Neurology 1988; 38: 987989.Google Scholar
3. Schievink, WI, Mokri, B, Whisnant, JR Internal carotid artery dissection in a community: Rochester, Minnesota, 1987–1992. Stroke 1993; 24: 16781680.CrossRefGoogle Scholar
4. Giroud, M, Fayolle, H, Andre, N, et al. Incidence of internal carotid artery dissection in the community of Dijon. J Neurol Neurosurg Psychiatry 1994; 57: 1443.Google Scholar
5. Mokri, B. Spontaneous dissections of internal carotid arteries. Neurologist 1997; 3:104119.Google Scholar
6. Bogousslavsky, J, Regli, F. Ischemic stroke in adults younger than 30 years of age: cause and prognosis. Arch Neurol 1987; 44: 479482.Google Scholar
7. Schievink, WI, Mokri, B, O’Fallon, WM. Recurrent spontaneous cervical-artery dissection. N Engl J Med 1994; 330: 393397.Google Scholar
8. Schievink, WI, Michels, VV, Piepgras, DG. Neurovascular manifestations of heritable connective tissue disorders. Review. Stroke 1994; 25: 889903.Google Scholar
9. Farrell, MA, Gilbert, JJ, Kaufmann, JCE. Fatal intracranial arterial dissection: clinical pathological correlation. J Neurol Neurosurg Psychiatry 1985; 48: 111121.Google Scholar
10. Chang, CM, Ng, HK, Leung, SY, Fong, KY, Yu, YL. Fatal bilateral vertebral artery dissection in a patient with cystic medial necrosis. Clin Neurol Neurosurg 1991; 93–4: 309-311.Google Scholar
11. Ojemann, RG, Fisher, CM, Rich, JC. Spontaneous dissecting aneurysm of the internal carotid artery. Stroke 1972; 3: 434440.Google Scholar
12. Cattell, MA, Hasleton, PS, Anderson, JC. Increased elastin content and decreased elastin concentration may be predisposing factors in dissecting aneurysms of human thoracic aorta. Cardiovasc Res 1993; 27: 176181.Google Scholar
13. Bonnet, J, Aumailley, M, Thomas, D, et al. Spontaneous coronary artery dissection: case report and evidence for a defect in collagen metabolism. Eur Heart J 1986; 7: 904909.Google Scholar
14. Schievink, WI, Mokri, B. Familial aorto-cervicocephalic arterial dissections and congenitally bicuspid aortic valve. Stroke 1995; 26: 19351940.Google Scholar
15. Schievink, WI, Michels, W, Mokri, B, Piepgras, DG, Perry, HO. A familial syndrome of arterial dissections with lentiginosis. N Engl J Med 1995; 332: 576579.Google Scholar
16. Schievink, WI, Mokri, B, Michels, VV, Piepgras, DG. Familial association of intracranial aneurysms and cervical artery dissections. Stroke 1991; 22: 14261430.Google Scholar
17. Kuivaniemi, H, Prockop, DJ, Wu, Y, et al. Exclusion of mutations in the gene for type III collagen (COL3A1) as a common cause of intracranial aneurysms or cervical artery dissections. Neurology 1993; 43: 26522658.Google Scholar
18. Schievink, WI, Mokri, B, Piepgras, DG, Gittenberger-de Groot, AC. Intracranial aneurysms and cervicocephalic arterial dissections associated with congenital heart disease. Neurosurgery 1996; 39: 685689.Google Scholar
19. Henry, WL, Gardin, JM, Ware, JH. Echocardiographic measurements in normal subjects from infancy to old age. Circulation 1980; 62: 10541061.Google Scholar
20. Shores, J, Berger, KR, Murphy, EA, Pyeritz, RE. Progression of aortic dilatation and the benefit of long term beta-andrenergic blockade in Marfan’s syndrome. N Engl J Med 1994; 330:13351341.Google Scholar
21. Tzourio, C, Cohen, A, Lamisse, N, Biousse, V, Bousser, M-G. Aortic root dilatation in patients with spontaneous artery dissection. Circulation 1997; 95: 23512353.Google Scholar
22. Ambary, A, Watanabe, Y, Saeki, N. Dissecting aneurysms of the intracranial vertebral artery. J Neurosurg 1990; 72: 183188.Google Scholar
23. Sato, O, Bascom, JF, Logothetis, J. Intracranial dissecting aneurysm. Case report. J Neurosurg 1971; 35: 483487.Google Scholar
24. Endo, S, Nishijima, M, Nomura, H, Takaku, A, Okada, E. A pathological study of intracranial posterior circulation dissecting aneurysms with subarachnoid haemorrhage: report of three autopsied cases and review of literature. Neurosurgery 1993; 33: 732738.Google Scholar
25. Chang, V, Rewcastle, NB, Harwood-Nash, DCF, Norman, MG. Bilateral dissecting aneurysms of the internal carotid arteries in an 8-year-old boy. Neurology 1975; 25: 573579.Google Scholar
26. Guridi, J, Gallego, J, Monzon, F, Aguilera, F. Intracerebral haemorrhage caused by transmural dissection of the anterior cerebral artery. Stroke 1993; 24: 14001402.CrossRefGoogle ScholarPubMed
27. Mizutani, T. Middle cerebral artery dissecting aneurysm with persistent patent pseudolumen. J Neurosurg 1996; 84: 267268.Google Scholar
28. Shimoji, T, Bando, K, Nakajima, K, Kazufumi, I. Dissecting aneurysm of the vertebral artery. Report of seven cases and angiographic findings. J Neurosurg 1984; 61: 10381046.Google Scholar
29. Hoffmann, M, Sacco, RL, Chan, S, Mohr, JP. Noninvasive detection of vertebral artery dissection. Stroke 1993; 24: 815819.Google Scholar
30. Chen, JL, Smith, R, Keller, A, Kucharczyk, W. Spontaneous dissection of the vertebral artery: MR findings. Comput Assist Tomogr 1989; 13: 326329.Google Scholar
31. Touboul, PJ, Mas, JL, Bousser, MG, Laplane, D. Duplex scanning in extracranial vertebral artery dissection. Stroke 1988; 19: 116121.Google Scholar
32. Saver, JL, Easton, JD, Hart, RG. Dissections and trauma of cervico-cerebral arteries. In: Barnett, HJM, Mohr, JP, Stein, BM, Yatsu, FM, eds. Stroke, Pathophysiology, Diagnosis and Management,2nd Edition. London: Churchill Livingstone, 1992: 671688 Google Scholar
33. Phillips, MT, Kirby, ML, Forbes, G. Analysis of cranial neural crest distribution in the developing heart using quail-chick chimeras. Circ Res 1987; 60: 2730.Google Scholar
34. Kirby, ML, Turnage, KL, Hays, BM. Characterization of conotruncal malformations following ablation of “cardiac” neural crest. Anat Rec 1985; 213: 8793.Google Scholar
35. Kirby, ML, Waldo, KL. Neural crest and cardiovascular patterning. Circ Res 1995; 77: 211215.Google Scholar
36. Bronner-Fraser, M. Origins and developmental potential of the neural crest. Exp Cell Res 1995; 218: 405417.CrossRefGoogle ScholarPubMed
37. Kirby, ML, Hunt, P, Wallis, K, Thorogood, P. Abnormal patterning of the aortic arch arteries does not evoke cardiac malformations. Dev Dynamics 1997; 208: 3437.Google Scholar
38. Kappetein, AP, Gittenberger-de Groot, AC, Zwinderman, AH, et al. The neural crest as a possible pathogenetic factor in coarctation of the aorta and bicuspid aortic valve. J Thorac Cardiovasc Surg 1991; 102: 830836.Google Scholar
39. Ya, J, Schilham, NW, Clevers, H, Moorman, AF, Lamers, WH. Animal models of congenital defects in the ventriculoarterial connection of the heart. J Molec Med 1997; 75: 551566.CrossRefGoogle ScholarPubMed
40. Kirby, ML. Cardiac morphogenesis – recent research advances. Pediatr Res 1987; 21: 219224.Google Scholar
41. Topouzis, S, Majesky, MW. Smooth muscle lineage diversity in the chick embryo. Two types of aortic smooth muscle cell differ in growth and receptor-mediated transcriptional responses to transforming growth factor-beta. Dev Biol 1996; 178: 430445.Google Scholar
42. Hood, LC, Rosenquist, TH. Coronary artery development in the chick: origin and deployment of smooth muscle cells and the effect of neural crest ablation. Anat Rec 1992; 234: 291300.Google Scholar
43. Rosenquist, TH, McCoy, JR, Waldo, KL, Kirby, ML. Origin and propagation of elastogenesis in the developing cardiovascular system. Anat Rec 1988; 221: 860871.Google Scholar
44. Rosenquist, TH, Beall, AC, Modis, L, Fishman, R. Impaired elastic matrix development in the great arteries after ablation of the cardiac neural crest. Anat Rec 1990; 226: 347359.Google Scholar