Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-24T03:03:28.718Z Has data issue: false hasContentIssue false

Canadian Association of Neurosciences Review: Learning at a Snail's Pace

Published online by Cambridge University Press:  02 December 2014

Kashif Parvez
Affiliation:
Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
David Rosenegger
Affiliation:
Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
Michael Orr
Affiliation:
Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
Kara Martens
Affiliation:
Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
Ken Lukowiak*
Affiliation:
Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
*
Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, T2N 4N1, Canada
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

While learning and memory are related, they are distinct processes each with different forms of expression and underlying molecular mechanisms. An invertebrate model system, Lymnaea stagnalis, is used to study memory formation of a non-declarative memory. We have done so because: 1) We have discovered the neural circuit that mediates an interesting and tractable behaviour; 2) This behaviour can be operantly conditioned and intermediate-term and long-term memory can be demonstrated; and 3) It is possible to demonstrate that a single neuron in the model system is a necessary site of memory formation. This article reviews how Lymnaea has been used in the study of behavioural and molecular mechanisms underlying consolidation, reconsolidation, extinction and forgetting.

Résumé:

RÉSUMÉ:

Bien que l’apprentissage et la mémoire soient deux fonctions connexes, leurs processus sont distincts et chacun a des formes d’expression différentes et des mécanismes moléculaires sous-jacents différents. Nous utilisons un système dans un modèle invertébré, la Lymnaea stagnalis, pour étudier comment se forme une mémoire non déclarative. Nous avons utilisé ce modèle parce que: 1) Nous avons découvert un circuit neural qui assure la médiation d’un comportement intéressant et observable; 2) Ce comportement peut être conditionné en cours d’étude et la mémoire à moyen et à long terme peut être démontrée; 3) Il est possible de démontrer dans ce modèle qu’un seul neurone est nécessaire pour la formation de la mémoire. Cet article revoit comment la Lymnaea a été utilisée pour étudier les mécanismes comportementaux et moléculaires sous-jacents à la consolidation, à la reconsolidation, à l’extinction et à l’oubli.

Type
Review Articles
Copyright
Copyright © The Canadian Journal of Neurological 2006

References

1. Milner, B, Squire, LR, Kandel, ER. Cognitive neuroscience and the study of memory. Neuron. 1998; 20 (3):44568.Google Scholar
2. Scheibenstock, A, Krygier, D, Haque, Z, Syed, N, Lukowiak, K. The Soma of RPeD1 must be present for long-term memory formation of associative learning in Lymnaea. J Neurophysiol. 2002; 88 (4):158491.Google Scholar
3. Dudai, Y. Memory from A to Z. Oxford: Oxford University Press; 2002.Google Scholar
4. Thompson, RF, Spencer, WA. Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev. 1966; 73 (1):1643.Google Scholar
5. Castellucci, V, Carew, TJ, Kandel, ER. Cellular analysis of long-term habituation of the gill-withdrawal reflex of Aplysia californica. Science. 1978; (202):13068.Google Scholar
6. Kupfermann, I, Castellucci, V, Pinsker, H, Kandel, ER. Neuronal correlates of habituation and dishabituation of the gill-withdrawal reflex in Aplysia. Science. 1970; (176):17408.Google ScholarPubMed
7. Pinsker, H, Kupfermann, I, Castellucci, V, Kandel, ER. Cellular analysis of behavioral reflex habituation in Aplysia. Fed Proc. 1969; 28:588.Google Scholar
8. Castellucci, V, Kandel, ER. Presynaptic facilitation as a mechanism for behavioral sensitization in Aplysia. Science. 1976; 194 (4270):11768.Google Scholar
9. Castellucci, VF, Frost, WN, Goelet, P, Montarolo, PG, Schacher, S, Morgan, JA, et al. Cell and molecular analysis of long-term sensitization in Aplysia. J Physiol (Paris). 1986; 81 (4):34957.Google ScholarPubMed
10. Kimble, GA. ‘Hilgard and Marquis’ conditioning and learning. 2nd ed. New York: Appleton-Century-Croft; 1961.Google Scholar
11. Carew, TJ, Sahley, CL. Invertebrate learning and memory: from behavior to molecules. Annu Rev Neurosci. 1986; 9:43587.CrossRefGoogle ScholarPubMed
12. Skinner, BF. Are theories of learning necessary? Psychol Rev. 1950; 57 (4):193216.Google Scholar
13. Thorndike, E. Animal intelligence. New York: The Macmillan Co.; 1911.Google Scholar
14. Lipsitt, LP. Learning processes in the human newborn. Sensitization, habituation, and classical conditioning. Ann N Y Acad Sci. 1990; 608:11323; discussion 23-7.CrossRefGoogle ScholarPubMed
15. Lukowiak, K, Ringseis, E, Spencer, G, Wildering, W, Syed, N. Operant conditioning of aerial respiratory behaviour in Lymnaea stagnalis. J Exp Biol. 1996; 199 (Pt 3):68391.Google Scholar
16. Lukowiak, K, Adatia, N, Krygier, D, Syed, N. Operant conditioning in Lymnaea: evidence for intermediate- and long-term memory. Learn Mem. 2000; 7 (3):14050.Google Scholar
17. Rankin, CH. Context conditioning in habituation in the nematode Caenorhabditis elegans. Behav Neurosci. 2000; 114 (3):496505.Google Scholar
18. Glanzman, DL. The cellular basis of classical conditioning in Aplysia californica--it’s less simple than you think. Trends Neurosci. 1995; 18 (1):306.Google Scholar
19. Hawkins, RD, Kandel, ER, Bailey, CH. Molecular mechanisms of memory storage in Aplysia. Biol Bull. 2006; 210 (3):17491.Google Scholar
20. Lukowiak, K, Sahley, CL. The in vitro classical conditioning of the gill withdrawal reflex of Aplysia californica. Science. 1981; 212:15168.CrossRefGoogle Scholar
21. Menzel, R. Searching for the memory trace in a mini-brain, the honeybee. Learn Mem. 2001; 8 (2):5362.Google Scholar
22. Skoulakis, EM, Grammenoudi, S. Dunces and da Vincis: the genetics of learning and memory in Drosophila. Cell Mol Life Sci. 2006; 63 (9):97588.Google Scholar
23. Crow, T, Tian, LM. Pavlovian conditioning in Hermissenda: a circuit analysis. Biol Bull. 2006; 210 (3):28997.Google Scholar
24. LeDoux, JE, Cicchetti, P, Xagoraris, A, Romanski, LM. The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. J Neurosci. 1990; 10 (4):10629.Google Scholar
25. Rogan, MT, LeDoux, JE. LTP is accompanied by commensurate enhancement of auditory-evoked responses in a fear conditioning circuit. Neuron. 1995; 15 (1):12736.Google Scholar
26. Lasiter, PS, Deems, DA, Garcia, J. Involvement of the anterior insular gustatory neocortex in taste-potentiated odor aversion learning. Physiol Behav. 1985; 34 (1):717.Google Scholar
27. Lasiter, PS, Glanzman, DL. Cortical substrates of taste aversion learning: dorsal prepiriform (insular) lesions disrupt taste aversion learning. J Comp Physiol Psychol. 1982; 96 (3):37692.CrossRefGoogle ScholarPubMed
28. Lasiter, PS, Glanzman, DL. Cortical substrates of taste aversion learning: involvement of dorsolateral amygdaloid nuclei and temporal neocortex in taste aversion learning. Behav Neurosci. 1985; 99 (2):25776.Google Scholar
29. Jones, J. Aspects of respiration in Planorbis corneus (L) and Lymnaea stagnalis (L) (Gastropoda: Pulmonata). Comp. Biochem. Physiol. 1961; (4):129.Google Scholar
30. Syed, N, Winlow, W. Respiratory behaviour in the pond snail Lymnaea stagnalis. II. Neural elements of the central pattern generator (CPG). J Comp Physiol. 1991; 169:55768.Google Scholar
31. Syed, NI, Bulloch, AG, Lukowiak, K. In vitro reconstruction of the respiratory central pattern generator of the mollusk Lymnaea. Science. 1990; 250 (4978):2825.Google Scholar
32. Inoue, T, Takasaki, M, Lukowiak, K, Syed, N. Inhibition of the respiratory pattern-generating neurons by an identified whole-body withdrawal interneuron of Lymnaea stagnalis. J Exp Biol. 1996; 199 (Pt 9):188798.CrossRefGoogle ScholarPubMed
33. Lukowiak, K. Central pattern generators: some principles learned from invertebrate model systems. J Physiol (Paris). 1991; 85 (2):6370.Google Scholar
34. Lukowiak, K, Sangha, S, McComb, C, Varshney, N, Rosenegger, D, Sadamoto, H, et al. Associative learning and memory in Lymnaea stagnalis: how well do they remember? J Exp Biol. 2003; 206 (Pt 13):2097103.Google Scholar
35. Sangha, S, McComb, C, Lukowiak, K. Forgetting and the extension of memory in Lymnaea. J Exp Biol. 2003; 206 (Pt 1):717.Google Scholar
36. Haney, J, Lukowiak, K. Context learning and the effect of context on memory retrieval in Lymnaea. Learn Mem. 2001; 8 (1):3543.Google Scholar
37. Ribot, T. Diseases of memory. New York: Appleton-Century-Crofts; 1882.Google Scholar
38. Muller, GE, Pilzecker, A. Experimentelle Beiträge zur Lehre vom Gedächtnis. Z. Psychol. Erganzungsband. 1900; 1:1300.Google Scholar
39. McGaugh, JL. Time-dependent processes in memory storage. Science. 1966; 153 (742):13518.Google Scholar
40. Squire, LR, Alvarez, P. Retrograde amnesia and memory consolidation: a neurobiological perspective. Curr Opin Neurobiol. 1995; 5 (2):16977.Google Scholar
41. Rosenzweig, M. Historical perspectives on the development of the biology of learning and memory. In: Martinez, J, Kesner, R, editors, translator and editor Neurobiology of learning and Memory. San Diego: Academic Press; 1998; p.154.Google Scholar
42. Rosenzweig, MR, Bennett, EL, Colombo, PJ, Lee, DW, Serrano, PA. Short-term, intermediate-term, and long-term memories. Behav Brain Res. 1993; 57 (2):1938.CrossRefGoogle ScholarPubMed
43. Sutton, MA, Bagnall, MW, Sharma, SK, Shobe, J, Carew, TJ. Intermediate-term memory for site-specific sensitization in aplysia is maintained by persistent activation of protein kinase C. J Neurosci. 2004; 24 (14):36009.Google Scholar
44. Sutton, MA, Ide, J, Masters, SE, Carew, TJ. Interaction between amount and pattern of training in the induction of intermediate-and long-term memory for sensitization in aplysia. Learn Mem. 2002; 9 (1):2940.Google Scholar
45. Morrison, GE, van der Kooy, D. Cold shock before associative conditioning blocks memory retrieval, but cold shock after conditioning blocks memory retention in Caenorhabditis elegans. Behav Neurosci. 1997; 111 (3):56478.Google Scholar
46. Yamada, A, Sekiguchi, T, Suzuki, H, Mizukami, A. Behavioral analysis of internal memory states using cooling-induced retrograde amnesia in Limax flavus. J Neurosci. 1992; 12 (3):72935.Google Scholar
47. Sangha, S, Morrow, R, Smyth, K, Cooke, R, Lukowiak, K. Cooling blocks ITM and LTM formation and preserves memory. Neurobiol Learn Mem. 2003; 80 (2):1309.CrossRefGoogle ScholarPubMed
48. Spencer, GE, Lukowiak, K, Syed, NI. Transmitter-receptor interactions between growth cones of identified Lymnaea neurons determine target cell selection in vitro. J Neurosci. 2000; 20 (21):807786.Google Scholar
49. Spencer, GE, Syed, NI, Lukowiak, K. Neural changes after operant conditioning of the aerial respiratory behavior in Lymnaea stagnalis. J Neurosci. 1999; 19 (5):183643.CrossRefGoogle ScholarPubMed
50. Izquierdo, LA, Barros, DM, Vianna, MR, Coitinho, A, deDavid e Silva, T, Choi, H, et al. Molecular pharmacological dissection of short-and long-term memory. Cell Mol Neurobiol. 2002; 22 (3):26987.Google Scholar
51. Crow, T, Redell, JB, Tian, LM, Xue-Bian, J, Dash, PK. Inhibition of conditioned stimulus pathway phosphoprotein 24 expression blocks the development of intermediate-term memory in Hermissenda. J Neurosci. 2003; 23 (8):341522.CrossRefGoogle ScholarPubMed
52. DeZazzo, J, Tully, T. Dissection of memory formation: from behavioral pharmacology to molecular genetics. Trends Neurosci. 1995; 18 (5):2128.CrossRefGoogle ScholarPubMed
53. Emptage, NJ, Carew, TJ. Long-term synaptic facilitation in the absence of short-term facilitation in Aplysia neurons. Science. 1993; 262 (5131):2536.Google Scholar
54. Hegde, AN, Inokuchi, K, Pei, W, Casadio, A, Ghirardi, M, Chain, DG, et al. Ubiquitin C-terminal hydrolase is an immediate-early gene essential for long-term facilitation in Aplysia. Cell. 1997; 89 (1):11526.Google Scholar
55. Mauelshagen, J, Parker, GR, Carew, TJ. Dynamics of induction and expression of long-term synaptic facilitation in Aplysia. J Neurosci. 1996; 16 (22):7099108.Google Scholar
56. Tully, T, Preat, T, Boynton, SC, Del Vecchio, M. Genetic dissection of consolidated memory in Drosophila. Cell. 1994; 79 (1):3547.Google Scholar
57. Ghirardi, M, Montarolo, PG, Kandel, ER. A novel intermediate stage in the transition between short- and long-term facilitation in the sensory to motor neuron synapse of aplysia. Neuron. 1995; 14 (2):41320.Google Scholar
58. Parvez, K, Stewart, O, Sangha, S, Lukowiak, K. Boosting intermediate-term into long-term memory. J Exp Biol. 2005; 208 (Pt 8):152536.Google Scholar
59. Smyth, K, Sangha, S, Lukowiak, K. Gone but not forgotten: the lingering effects of intermediate-term memory on the persistence of long-term memory. J Exp Biol. 2002; 205 (Pt 1):13140.Google Scholar
60. Sutton, MA, Masters, SE, Bagnall, MW, Carew, TJ. Molecular mechanisms underlying a unique intermediate phase of memory in aplysia. Neuron. 2001; 31 (1):14354.CrossRefGoogle ScholarPubMed
61. Zhao, WQ, Polya, GM, Wang, BH, Gibbs, ME, Sedman, GL, Ng, KT. Inhibitors of cAMP-dependent protein kinase impair long-term memory formation in day-old chicks. Neurobiol Learn Mem. 1995; 64 (2):10618.Google Scholar
62. Riedel, G. If phosphatases go up, memory goes down. Cell Mol Life Sci. 1999; 55 (4):54953.Google Scholar
63. Parvez, K, Moisseev, V, Lukowiak, K. A context-specific single contingent-reinforcing stimulus boosts intermediate-term memory to long-term memory. Eur J Neuro Sci. 2006; 24 (2):60616.CrossRefGoogle ScholarPubMed
64. Yin, JC, Del Vecchio, M, Zhou, H, Tully, T. CREB as a memory modulator: induced expression of a dCREB2 activator isoform enhances long-term memory in Drosophila. Cell. 1995; 81 (1):10715.CrossRefGoogle ScholarPubMed
65. Bartsch, D, Ghirardi, M, Skehel, PA, Karl, KA, Herder, SP, Chen, M, et al. Aplysia CREB2 represses long-term facilitation: relief of repression converts transient facilitation into long-term functional and structural change. Cell. 1995; 83 (6):97992.Google Scholar
66. Muller, U. Prolonged activation of cAMP-dependent protein kinase during conditioning induces long-term memory in honeybees. Neuron. 2000; 27 (1):15968.Google Scholar
67. Misanin, JR, Miller, RR, Lewis, DJ. Retrograde amnesia produced by electroconvulsive shock after reactivation of a consolidated memory trace. Science. 1968; 160 (827):5545.Google Scholar
68. Nader, K. Memory traces unbound. Trends Neurosci. 2003; 26 (2):6572.Google Scholar
69. Milekic, MH, Alberini, CM. Temporally graded requirement for protein synthesis following memory reactivation. Neuron. 2002; 36 (3):5215.Google Scholar
70. Anokhin, KV, Tiunova, AA, Rose, SP. Reminder effects -reconsolidation or retrieval deficit? Pharmacological dissection with protein synthesis inhibitors following reminder for a passive-avoidance task in young chicks. Eur J Neurosci. 2002; 15 (11):175965.Google Scholar
71. Nader, K, Schafe, GE, Le Doux, JE. Fear memories require protein synthesis in the amygdala for reconsolidation after retrieval. Nature. 2000; 406 (6797):7226.Google Scholar
72. Pedreira, ME, Perez-Cuesta, LM, Maldonado, H. Reactivation and reconsolidation of long-term memory in the crab Chasmagnathus: protein synthesis requirement and mediation by NMDA-type glutamatergic receptors. J Neurosci. 2002; 22 (18):830511.Google Scholar
73. Przybyslawski, J, Sara, SJ. Reconsolidation of memory after its reactivation. Behav Brain Res. 1997; 84 (1-2):2416.Google Scholar
74. Sangha, S, Scheibenstock, A, Lukowiak, K. Reconsolidation of a long-term memory in Lymnaea requires new protein and RNA synthesis and the soma of right pedal dorsal 1. J Neurosci. 2003; 23 (22):803440.CrossRefGoogle ScholarPubMed
75. Sekiguchi, T, Yamada, A, Suzuki, H. Reactivation-dependent changes in memory states in the terrestrial slug Limax flavus. Learn Mem. 1997; 4 (4):35664.Google Scholar
76. Taubenfeld, SM, Milekic, MH, Monti, B, Alberini, CM. The consolidation of new but not reactivated memory requires hippocampal C/EBPbeta. Nat Neurosci. 2001; 4 (8):8138.Google Scholar
77. Bourtchuladze, R, Frenguelli, B, Blendy, J, Cioffi, D, Schutz, G, Silva, AJ. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell. 1994; 79 (1):5968.CrossRefGoogle ScholarPubMed
78. Dash, PK, Hochner, B, Kandel, ER. Injection of the cAMP-responsive element into the nucleus of Aplysia sensory neurons blocks long-term facilitation. Nature. 1990; 345 (6277):71821.Google Scholar
79. Guzowski, JF, McGaugh, JL. Antisense oligodeoxynucleotide-mediated disruption of hippocampal cAMP response element binding protein levels impairs consolidation of memory for water maze training. Proc Natl Acad Sci U S A. 1997; 94 (6):26938.Google Scholar
80. Kogan, JH, Frankland, PW, Blendy, JA, Coblentz, J, Marowitz, Z, Schutz, G, et al. Spaced training induces normal long-term memory in CREB mutant mice. Curr Biol. 1997; 7 (1):111.Google Scholar
81. Lamprecht, R, Hazvi, S, Dudai, Y. cAMP response element-binding protein in the amygdala is required for long- but not short-term conditioned taste aversion memory. J Neurosci. 1997; 17 (21):844350.Google Scholar
82. Yin, JC, Wallach, JS, Del Vecchio, M, Wilder, EL, Zhou, H, Quinn, WG, et al. Induction of a dominant negative CREB transgene specifically blocks long-term memory in Drosophila. Cell. 1994; 79 (1):4958.Google Scholar
83. Kida, S, Josselyn, SA, de Ortiz, SP, Kogan, JH, Chevere, I, Masushige, S, et al. CREB required for the stability of new and reactivated fear memories. Nat Neurosci. 2002; 5 (4):34855.Google Scholar
84. Debiec, J, LeDoux, JE, Nader, K. Cellular and systems reconsolidation in the hippocampus. Neuron. 2002; 36 (3):52738.Google Scholar
85. Abeliovich, A, Paylor, R, Chen, C, Kim, JJ, Wehner, JM, Tonegawa, S. PKC gamma mutant mice exhibit mild deficits in spatial and contextual learning. Cell. 1993; 75 (7):126371.Google Scholar
86. Morris, RG, Anderson, E, Lynch, GS, Baudry, M. Selective impairment of learning and blockade of long-term potentiation by an N-methyl-D-aspartate receptor antagonist, AP5. Nature. 1986; 319 (6056):7746.Google Scholar
87. Summers, MJ, Crowe, SF, Ng, KT. Administration of DL-2-amino-5-phosphonovaleric acid (AP5) induces transient inhibition of reminder-activated memory retrieval in day-old chicks. Brain Res Cogn Brain Res. 1997; 5 (4):31121.Google Scholar
88. Lee, JL, Everitt, BJ, Thomas, KL. Independent cellular processes for hippocampal memory consolidation and reconsolidation. Science. 2004; 304 (5672):83943.CrossRefGoogle ScholarPubMed
89. Alberini, CM, Ghirardi, M, Metz, R, Kandel, ER. C/EBP is an immediate-early gene required for the consolidation of long-term facilitation in Aplysia. Cell. 1994; 76 (6):1099114.Google Scholar
90. Sangha, S. Memory formation, reconsolidation, extinction and forgetting in Lymnaea stagnalis: PhD Thesis. Calgary: University of Calgary; 2004. p. 227.Google Scholar
91. Rescorla, R, Wagner, A. A theory of Pavlovian conditioning: variations in the effectiveness of reinforcement and nonreinforcement. In: Black, A; Prokasy, W, editors. Classical Conditioning II: Current Research and Theory. New York: Appleton-Century-Crofts; 1972. (A Black; W Prokasy editors).Google Scholar
92. Pavlov, IP. Conditioned reflexes. London: Oxford UP.; 1927.Google Scholar
93. Berman, DE, Dudai, Y. Memory extinction, learning anew, and learning the new: dissociations in the molecular machinery of learning in cortex. Science. 2001; 291 (5512):24179.Google Scholar
94. Flood, JF, Jarvik, ME, Bennett, EL, Orme, AE, Rosenzweig, MR. Protein synthesis inhibition and memory for pole jump active avoidance and extinction. Pharmacol Biochem Behav. 1977; 7 (1):717.Google Scholar
95. Vianna, MR, Szapiro, G, McGaugh, JL, Medina, JH, Izquierdo, I. Retrieval of memory for fear-motivated training initiates extinction requiring protein synthesis in the rat hippocampus. Proc Natl Acad Sci U S A. 2001; 98 (21):122514.CrossRefGoogle ScholarPubMed
96. McComb, C, Sangha, S, Qadry, S, Yue, J, Scheibenstock, A, Lukowiak, K. Context extinction and associative learning in Lymnaea. Neurobiol Learn Mem. 2002; 78 (1):2334.Google Scholar
97. Myers, KM, Davis, M. Behavioral and neural analysis of extinction. Neuron. 2002; 36 (4):56784.Google Scholar
98. Richards, WG, Farley, J, Alkon, DL. Extinction of associative learning in Hermissenda: behavior and neural correlates. Behav Brain Res. 1984; 14 (3):16170.Google Scholar
99. Sangha, S, Scheibenstock, A, Morrow, R, Lukowiak, K. Extinction requires new RNA and protein synthesis and the soma of the cell right pedal dorsal 1 in Lymnaea stagnalis. J Neurosci. 2003; 23 (30):984251.Google Scholar
100. Schwaerzel, M, Heisenberg, M, Zars, T. Extinction antagonizes olfactory memory at the subcellular level. Neuron. 2002; 35 (5):95160.Google Scholar
101. Lowe, MR, Spencer, GE. Perturbation of the activity of a single identified neuron affects long-term memory formation in a molluscan semi-intact preparation. J Exp Biol. 2006; 209 (Pt 4):71121.Google Scholar
102. McComb, C, Varshney, N, Lukowiak, K. Juvenile Lymnaea ventilate, learn and remember differently than do adult Lymnaea. J Exp Biol. 2005; 208 (Pt 8):145967.Google Scholar
103. Jenkins, J, Dallenbach, K. Obliviscence during sleep and waking. Am J Psychol. 1924; 35:60512.Google Scholar
104. Sangha, S, Scheibenstock, A, Martens, K, Varshney, N, Cooke, R, Lukowiak, K. Impairing forgetting by preventing new learning and memory. Behav Neurosci. 2005; 119 (3):78796.Google Scholar
105. Shors, TJ. Learning during stressful times. Learn Mem. 2004; 11 (2):13744.CrossRefGoogle ScholarPubMed
106. Kim, JJ, Koo, JW, Lee, HJ, Han, JS. Amygdalar inactivation blocks stress-induced impairments in hippocampal long-term potentiation and spatial memory. J Neurosci. 2005; 25 (6):15329.Google Scholar
107. Cahill, L, McGaugh, JL. Mechanisms of emotional arousal and lasting declarative memory. Trends Neurosci. 1998; 21 (7):2949.Google Scholar
108. Bohannon, JN, 3rd. Flashbulb memories for the space shuttle disaster: a tale of two theories. Cognition. 1988; 29 (2):17996.Google Scholar
109. Martens, K, Lukowiak, K. Long-term memory in Lymnaea using one-trial operant training (abstract). In Society for Neuroscience. Washington, D.C., USA; 2005.Google Scholar
110. Coolen, I, Dangles, O, Casas, J. Social learning in noncolonial insects? Curr Biol. 2005; 15 (21):19315.Google Scholar
111. Rigby, MC, Jokela, J. Predator avoidance and immune defence: costs and trade-offs in snails. Proc Biol Sci. 2000; 267 (1439):1716.Google Scholar
112. Orr, MV, Lukowiak, K. Learning in stressful environments: Effect of predator presence on learning and memory in the pond snail (abstract). In Society for Neuroscience. Washington, D.C.; 2005.Google Scholar