Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T21:12:13.511Z Has data issue: false hasContentIssue false

Canadian Association of Neuroscience Review: Cellular and Synaptic Insights into Physiological and Pathological Pain

Published online by Cambridge University Press:  02 December 2014

Min Zhuo*
Affiliation:
Department of Physiology, Faculty of Medicine, University of Toronto, Centre for the Study of Pain, University of Toronto, Toronto, ON, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Neurons and synapses in the central nervous system are plastic, undergoing long-term changes throughout life. Studies of molecular and cellular mechanisms of such changes not only provide important insight into how we learn and store new knowledge in our brains, but they also reveal the mechanisms of pathological changes that occur following injury. The author proposes that during induction, neuronal mechanisms underlying physiological functions, such as learning and memory, may share some common signaling molecules with abnormal or injury-related changes in the brain. Distinct synaptic and neuronal network mechanisms are involved in pathological pain as compared to cognitive learning and memory. Nociceptive information is transmitted and regulated at different levels of the brain, from the spinal cord to the forebrain. Furthermore, N-methyl-D-aspartate receptor-dependent and calcium-calmodulin activated adenylyl cyclases (AC1 and AC8) in the anterior cingulate cortex play important roles in the induction and expression of persistent inflammatory and neuropathic pain. Neuronal activity in the anterior cingulate cortex can also influence nociceptive transmission in the dorsal horn of the spinal cord by activating the endogenous facilitatory system. Our results provide important synaptic and molecular insights into physiological responses to injury.

Résumé:

RÉSUMÉ:

Les neurones et les synapses du système nerveux central sont plastiques et subissent des changements à long terme pendant toute la vie. Des Études sur les mÉcanismes molÉculaires et cellulaires impliquÉs dans ces changements fournissent des informations importantes sur les mÉcanismes d’apprentissage et de storage de nouvelles connaissances ainsi que sur les mÉcanismes impliquÉs dans les changements pathologiques suite à une lÉsion. L’auteur propose que pendant l’induction, des molÉcules qui servent à la signalisation et qui sont impliquÉes dans les mÉcanismes neuronaux sous-jacents aux fonctions physiologiques comme l’apprentissage et la mÉmoire, sont Également impliquÉes dans les changements observÉs suite à une lÉsion cÉrÉbrale. Les mÉcanismes au niveau des rÉseaux synaptiques et neuronaux sont diffÉrents dans la douleur pathologique et dans l’apprentissage cognitif et la mÉmoire. L’information nociceptive est transmise et rÉgulÉe à diffÉrents niveaux du cerveau, de la moelle Épinière au prosencÉphale. De plus, l’adÉnyl-cyclase dÉpendante du rÉcepteur N-mÉthyl-D-aspartate et l’adÉnyl-cyclase activÉe par le couple calcium/calmodulin (AC1 et AC8) dans le cortex cingulaire antÉrieur jouent des rôles importants dans l’induction et l’expression de la douleur persistante d’Étiologie inflammatoire et nÉvropathique. L’activitÉ neuronale dans le cortex cingulaire antÉrieur peut aussi influencer la transmission nociceptive dans la corne postÉrieure de la moelle Épinière en activant le système facilitateur endogène. Nos rÉsultats contribuent à la comprÉhension des mÉcanismes synaptiques et molÉculaires impliquÉs dans la rÉponse physiologique à une lÉsion.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 2014

References

1. Tang, Y, Shimizu, E, Tsien, JZ. Do ‘smart’mice feel more pain, or arethey just better learners? Nat Neurosci 2001; 4(5): 453454.CrossRefGoogle ScholarPubMed
2. Levine, JD, Fields, HL, Basbaum, AI. Peptides and the primaryafferent nociceptor. J Neurosci 1993; 13(6): 22732286.CrossRefGoogle Scholar
3. Yoshimura, M, Jessell, T. Amino acid-mediated EPSPs at primaryafferent synapses with substantia gelatinosa neurones in the ratspinal cord. J Physiol 1990; 430: 315335.CrossRefGoogle Scholar
4. Li, P, Calejesan, AA, Zhuo, M. ATP P2x receptors and sensorysynaptic transmission between primary afferent fibers and spinal dorsal horn neurons in rats. J Neurophysiol 1998; 80(6): 33563360.CrossRefGoogle Scholar
5. Li, P, Wilding, TJ, Kim, SJ, et al. Kainate-receptor-mediated sensorysynaptic transmission in mammalian spinal cord. Nature 1999; 397(6715): 161164.CrossRefGoogle Scholar
6. Zhuo, M. Silent glutamatergic synapses and long-term facilitation inspinal dorsal horn neurons. Prog Brain Res 2000; 129: 101113.CrossRefGoogle ScholarPubMed
7. Li, P, Zhuo, M. Silent glutamatergic synapses and nociception inmammalian spinal cord. Nature 1998; 393(6686): 695698.CrossRefGoogle Scholar
8. Bardoni, R, Magherini, PC, MacDermott, AB. NMDA EPSCs atglutamatergic synapses in the spinal cord dorsal horn of thepostnatal rat. J Neurosci 1998; 18(16): 65586567.CrossRefGoogle Scholar
9. Wall, PD. Recruitment of ineffective synapses after injury. Adv Neurol 1988; 47: 387400.Google ScholarPubMed
10. Baba, H, Doubell, TP, Moore, KA, Woolf, CJ. Silent NMD Areceptor-mediated synapses are developmentally regulated in the dorsal horn of the rat spinal cord. J Neurophysiol 2000; 83(2): 955962.CrossRefGoogle Scholar
11. Wang, GD, Zhuo, M. Synergistic enhancement of glutamate-mediated responses by serotonin and forskolin in adult mouse spinal dorsal horn neurons. J Neurophysiol 2002; 87(2): 732739.CrossRefGoogle ScholarPubMed
12. Li, P, Zhuo, M. Substance P and neurokinin A mediate sensorysynaptic transmission in young rat dorsal horn neurons. Brain Res Bull 2001; 55(4): 521531.CrossRefGoogle Scholar
13. Robinson, DA, Wei, F, Wang, GD, et al. Oxytocin mediates stress-induced analgesia in adult mice. J Physiol 2002; 540(Pt 2): 593606.CrossRefGoogle ScholarPubMed
14. Yoshimura, M, North, RA. Substantiagelatinosa neuroneshyperpolarized in vitro by enkephalin. Nature 1983; 305(5934):529530.CrossRefGoogle ScholarPubMed
15. Nakatsuka, T, Gu, JG. ATP P2X receptor-mediated enhancement ofglutamate release and evoked EPSCs in dorsal horn neurons ofthe rat spinal cord. J Neurosci 2001; 21(17): 65226531.CrossRefGoogle Scholar
16. Nakatsuka, T, Tsuzuki, K, Ling, JX, Sonobe, H, Gu, JG. Distinct rolesof P2X receptors in modulating glutamate release at different primary sensory synapses in rat spinal cord. J Neurophysiol 2003;89(6): 32433252.CrossRefGoogle Scholar
17. Kohno, T, Kumamoto, E, Higashi, H, Shimoji, K, Yoshimura, M. Actions of opioids on excitatory and inhibitory transmission in substantia gelatinosa of adult rat spinal cord. J Physiol 1999; 518 (Pt 3): 803813.CrossRefGoogle ScholarPubMed
18. Ribeiro-da-Silva, A, Coimbra, A. Two types of synaptic glomeruliand their distribution in laminae I-III of the rat spinal cord. J Comp Neurol 1982; 209(2): 176186.CrossRefGoogle Scholar
19. Todd, AJ. GABA and glycine in synaptic glomeruli of the rat spinaldorsal horn. Eur J Neurosci 1996; 8(12): 24922498.CrossRefGoogle Scholar
20. Kerchner, GA, Wang, GD, Qiu, CS, Huettner, JE, Zhuo, M. Directpresynaptic regulation of GABA/glycine release by kainate receptors in the dorsal horn: an ionotropic mechanism. Neuron 2001; 32(3): 477488.CrossRefGoogle ScholarPubMed
21. Kerchner, GA, Wilding, TJ, Li, P, Zhuo, M, Huettner, JE. Presynaptickainate receptors regulate spinal sensory transmission. J Neurosci 2001; 21(1): 5966.CrossRefGoogle ScholarPubMed
22. Kerchner, GA, Wilding, TJ, Huettner, JE, Zhuo, M. Kainate receptorsubunits underlying presynaptic regulation of transmitter releasein the dorsal horn. J Neurosci 2002; 22(18): 80108017.CrossRefGoogle Scholar
23. Zhuo, M, Small, SA, Kandel, ER, Hawkins, RD. Nitric oxide andcarbon monoxide produce activity-dependent long-term synaptic enhancement in hippocampus. Science 1993; 260(5116): 19461950.CrossRefGoogle ScholarPubMed
24. Zhuo, M, Hu, Y, Schultz, C, Kandel, ER, Hawkins, RD. Role ofguanylyl cyclase and cGMP-dependent protein kinase in long-term potentiation. Nature 1994; 368(6472): 635639.CrossRefGoogle ScholarPubMed
25. Woolf, CJ, Salter, MW. Neuronal plasticity: increasing the gain inpain. Science 2000; 288(5472): 17651769.CrossRefGoogle Scholar
26. Willis, WD. Long-term potentiation in spinothalamic neurons. Brain Res Brain Res Rev 2002; 40(1-3): 202214.CrossRefGoogle ScholarPubMed
27. Ji, RR, Kohno, T, Moore, KA, Woolf, CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci 2003; 26(12): 696705.CrossRefGoogle ScholarPubMed
28. Zhuo, M. Synaptic and molecular mechanisms of glutamaterg i csynapses in pain and memory. Sheng Li Xue Bao 2003; 55(1): 18.Google Scholar
29. Ikeda, H, Heinke, B, Ruscheweyh, R, Sandkuhler, J. Synapticplasticity in spinal lamina I projection neurons that mediate hyperalgesia. Science 2003; 299(5610): 12371240.CrossRefGoogle Scholar
30. Basbaum, AI, Fields, HL. Endogenous pain control systems:brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 1984; 7: 309338.CrossRefGoogle ScholarPubMed
31. Fields, HL, Heinricher, MM, Mason, P. Neurotransmitters innociceptive modulatory circuits. Annu Rev Neurosci 1991; 14: 219245.CrossRefGoogle ScholarPubMed
32. Li, P, Kerchner, GA, Sala, C, et al. AMPA receptor-PDZ interactionsin facilitation of spinal sensory synapses. Nat Neurosci 1999; 2(11): 972977.CrossRefGoogle Scholar
33. Hori, Y, Endo, K, Takahashi, T. Long-lasting synaptic facilitationinduced by serotonin in superficial dorsal horn neurones of the ratspinal cord. J Physiol 1996; 492 (Pt 3): 867876.CrossRefGoogle Scholar
34. Tachibana, M, Wenthold, RJ, Morioka, H, Petralia, RS. Light andelectron microscopic immunocytochemical localization of AMPA-selective glutamate receptors in the rat spinal cord. J Comp Neurol 1994; 344(3): 431454.CrossRefGoogle Scholar
35. Popratiloff, A, Weinberg, RJ, Rustioni, A. AMPA receptor subunitsunderlying terminals of fine-caliber primary afferent fibers. J Neurosci 1996; 16(10): 33633372.CrossRefGoogle ScholarPubMed
36. Dong, H, O’Brien, RJ, Fung, ET, et al. GRIP: a synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature 1997; 386(6622): 279284.CrossRefGoogle Scholar
37. Dong, H, Zhang, P, Song, I, et al. Characterization of the glutamatereceptor-interacting proteins GRIP1 and GRIP2. J Neurosci 1999; 19(16): 69306941.CrossRefGoogle ScholarPubMed
38. Coull, JA, Boudreau, D, Bachand, K, et al. Trans-synaptic shift inanion gradient in spinal lamina I neurons as a mechanism of neuropathic pain. Nature 2003; 424(6951): 938942.CrossRefGoogle ScholarPubMed
39. Lee, DE, Kim, SJ, Zhuo, M. Comparison of behavioral responses tonoxious cold and heat in mice. Brain Res 1999; 845(1): 117121.CrossRefGoogle ScholarPubMed
40. Johansen, JP, Fields, HL, Manning, BH. The affective component ofpain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc Natl Acad Sci USA 2001; 98(14): 80778082.CrossRefGoogle Scholar
41. Zhuo, M. Glutamate receptors and persistent pain: targeting fore-brain NR2B subunits. Drug Discov Today 2002; 7(4): 259267.CrossRefGoogle ScholarPubMed
42. Sikes, RW, Vogt, BA. Nociceptive neurons in area 24 of rabbitcingulate cortex. J Neurophysiol 1992; 68(5): 17201732.CrossRefGoogle ScholarPubMed
43. Hutchison, WD, Davis, KD, Lozano, AM, Tasker, RR, Dostrovsky JO.Pain-related neurons in the human cingulate cortex. Nat Neurosci 1999; 2(5): 403405.CrossRefGoogle ScholarPubMed
44. Rainville, P, Duncan, GH, Price, DD, Carrier, B, Bushnell, MC. Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science 1997; 277(5328): 968971.CrossRefGoogle Scholar
45. Rainville, P, Bushnell, MC, Duncan, GH. Representation of acute andpersistent pain in the human CNS: potential implications for chemical intolerance. Ann N YAcad Sci 2001; 933: 130141.CrossRefGoogle ScholarPubMed
46. Talbot, JD, Marrett, S, Evans, AC, et al. Multiple representations ofpain in human cerebral cortex. Science 1991; 251(4999): 13551358.CrossRefGoogle Scholar
47. Casey, KL. Forebrain mechanisms of nociception and pain: analysisthrough imaging. Proc Natl Acad Sci USA 1999; 96(14): 76687674.CrossRefGoogle Scholar
48. Wei, F, Li, P, Zhuo, M. Loss of synaptic depression in mammaliananterior cingulate cortex after amputation. J Neurosci 1999; 19(21): 93469354.CrossRefGoogle ScholarPubMed
49. Liauw, J, Wang, GD, Zhuo, M. NMDA receptors contribute tosynaptic transmission in anterior cingulate cortex of adult mice. Sheng Li Xue Bao 2003; 55(4): 373380.Google ScholarPubMed
50. Wei, F, Qiu, CS, Liauw, J, et al. Calcium calmodulin-dependentprotein kinase IV is required for fear memory. Nat Neurosci 2002; 5(6): 573579.CrossRefGoogle Scholar
51. Wei, F, Zhuo, M. Potentiation of sensory responses in the anteriorcingulate cortex following digit amputation in the anaesthetised rat. J Physiol 2001; 532(Pt 3): 823833.CrossRefGoogle Scholar
52. Wei, F, Wang, GD, Kerchner, GA, et al. Genetic enhancement ofinflammatory pain by forebrain NR2B overexpression. Nat Neurosci 2001; 4(2): 164169.CrossRefGoogle Scholar
53. Wei, F, Qiu, CS, Kim, SJ, et al. Genetic elimination of behavioralsensitization in mice lacking calmodulin-stimulated adenylylcyclases. Neuron 2002; 36(4): 713726.CrossRefGoogle Scholar
54. Tang, YP, Shimizu, E, Dube, GR, et al. Genetic enhancement oflearning and memory in mice. Nature 1999; 401(6748): 6369.CrossRefGoogle Scholar
55. Tao, YX, Rumbaugh, G, Wang, GD, et al. Impaired NMDAreceptor-mediated postsynaptic function and blunted NMDA receptor-dependent persistent pain in mice lacking postsynaptic density-93 protein. J Neurosci 2003; 23(17): 67036712.CrossRefGoogle Scholar
56. Wei, F, Xia, XM, Tang, J, et al. Calmodulin regulates synapticplasticity in the anterior cingulate cortex and behavioral responses: a microelectroporation study in adult rodents. J Neurosci 2003; 23(23): 84028409.CrossRefGoogle Scholar
57. Gebhart, GF. Modulatory effects of descending systems on spinaldorsal horn neurons. In: Kerr, FWL, Yaksh, TL (Eds). Spinal afferent processing. New York: Plenum Press, 1986: 391426.CrossRefGoogle Scholar
58. Gebhart, GF, Randich, A. Brainstem modulation of nociception. In: Klemm, WR, Vertes, RP (Eds). Brainstem Mechanisms of Behavior. New York: J. Wiley, 1990: 315352.Google Scholar
59. Willis, WD Jr. Anatomy and physiology of descending control ofnociceptive responses of dorsal horn neurons: comprehensive review. Prog Brain Res 1988; 77: 129.CrossRefGoogle Scholar
60. Zhuo, M, Gebhart, GF. Characterization of descending inhibition andfacilitation from the nuclei reticularis gigantocellularis and gigantocellularis pars alpha in the rat. Pain 1990; 42(3): 337350.CrossRefGoogle ScholarPubMed
61. Zhuo, M, Gebhart, GF. Spinal cholinergic and monoaminerg i creceptors mediate descending inhibition from the nuclei reticularis gigantocellularis and gigantocellularis pars alpha inthe rat. Brain Res 1990; 535(1): 6778.CrossRefGoogle Scholar
62. Zhuo, M, Gebhart, GF. Characterization of descending facilitationand inhibition of spinal nociceptive transmission from the nuclei reticularis gigantocellularis and gigantocellularis pars alpha in the rat. J Neurophysiol 1992; 67(6): 15991614.CrossRefGoogle ScholarPubMed
63. Zhuo, M, Gebhart, GF. Biphasic modulation of spinal nociceptivetransmission from the medullary raphe nuclei in the rat. J Neurophysiol 1997; 78(2): 746758.CrossRefGoogle Scholar
64. Travagli, RA, Williams, JT. Endogenous monoamines inhibitglutamate transmission in the spinal trigeminal nucleus of theguinea-pig. J Physiol 1996; 491 (Pt 1): 177185.CrossRefGoogle Scholar
65. Grudt, TJ, Williams, JT, Travagli, RA. Inhibition by 5-hydroxytryptamine and noradrenaline in substantia gelatinosa of guinea-pig spinal trigeminal nucleus. J Physiol 1995; 485 (Pt 1): 113120.CrossRefGoogle ScholarPubMed
66. Zhuo, M, Gebhart, GF. Spinalserotonin receptors mediatedescending facilitation of a nociceptive reflex from the nuclei reticularis gigantocellularis and gigantocellularis pars alpha inthe rat. Brain Res 1991; 550(1): 3548.CrossRefGoogle Scholar
67. Calejesan, AA, Kim, SJ, Zhuo, M. Descending facilitatory modulationof a behavioral nociceptive response by stimulation in the adult rat anterior cingulate cortex. Eur J Pain 2000; 4(1): 8396.CrossRefGoogle Scholar
68. Zhuo, M, Sengupta, JN, Gebhart, GF. Biphasic modulation of spinalvisceral nociceptive transmission from the rostroventral medialmedulla in the rat. J Neurophysiol 2002; 87(5): 22252236.CrossRefGoogle ScholarPubMed
69. Zhuo, M, Gebhart, GF. Modulation of noxious and non-noxiousspinal mechanical transmission from the rostral medial medullain the rat. J Neurophysiol 2002; 88(6): 29282941.CrossRefGoogle ScholarPubMed
70. Calejesan, AA, Ch’ang, MH, Zhuo, M. Spinal serotonergic receptorsmediate facilitation of a nociceptive reflex by subcutaneous formalin injection into the hindpaw in rats. Brain Res 1998; 798(1-2): 4654.CrossRefGoogle Scholar
71. Urban, MO, Gebhart, GF. Supraspinal contributions to hyperalgesia. Proc Natl Acad Sci U S A 1999; 96(14): 76877692.CrossRefGoogle ScholarPubMed
72. Porreca, F, Ossipov, MH, Gebhart, GF. Chronic pain and medullarydescending facilitation. Trends Neurosci 2002; 25(6): 319325.CrossRefGoogle ScholarPubMed
73. Robinson, D, Calejesan, AA, Zhuo, M. Long-lasting changes inrostral ventral medulla neuronal activity after inflammation. J Pain 2002; 3(4): 292300.CrossRefGoogle ScholarPubMed