Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T15:09:14.698Z Has data issue: false hasContentIssue false

Callosal Atrophy Correlates with Temporal Lobe Volume and Mental Status in Alzheimer's Disease

Published online by Cambridge University Press:  02 December 2014

Sandra E. Black
Affiliation:
Cognitive Neurology Unit, Department of Medicine and Research Program in Aging, Sunnybrook Women's College and Health Sciences Centre, University of Toronto, Toronto, Ontario.
Scott D. Moffat
Affiliation:
Gerontology Research Center, National, Institute on Aging, Baltimore MD.
David C. Yu
Affiliation:
Cognitive Neurology Unit, Department of Medicine and Research Program in Aging, Sunnybrook Women's College and Health Sciences Centre, University of Toronto, Toronto, Ontario.
Peter Stanchev
Affiliation:
Institute of Mathematics and Computer Science, Bulgarian Academy of Sciences
Michael Bronskill
Affiliation:
Medical Imaging, SWCHSC and Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Background:

Recent studies have reported significant atrophy of the corpus callosum (CC) in Alzheimer's Disease (AD). However, it is currently unknown whether CC atrophy is associated with specific cortical volume changes in AD. Moreover, possible atrophy in extra-callosal commissures has not been examined to date. The purpose of the present study was to quantify atrophy in two cerebral commissures [the CC and the anterior commissure (AC)], to correlate this measure with cognitive status, and to relate commissural size to independent measures of temporal lobe volume in AD patients.

Methods:

A sample of AD patients and of age- and education-matched normal control subjects (NCs) underwent MRI and a cognitive test battery including the Dementia Rating Scale and Mini Mental State examination. Mid-sagittal regional areas within CC and AC were measured along with superior, middle and inferior temporal lobes volumes.

Results:

Alzheimer's Disease patients had significantly smaller callosa than did NCs. The callosal regions most affected in AD included the midbody, isthmus and genu. The isthmus and midbody areas of the CC were positively correlated with cognitive performance and with superior temporal lobe volume in AD patients. The mid-sagittal area of the AC and the superior temporal volumes did not differ between AD patients and NCs.

Conclusion:

The study demonstrated that the regional morphology of the CC correlates with current cognitive status and temporal lobe atrophy in AD. As well, the lack of difference for the AC suggests that commissural atrophy in AD is regionally specific.

Résumé:

RÉSUMÉ:Introduction:

Des édes réntes ont rapporténe atrophie significative du corps calleux (CC) dans la maladie d’Alzheimer (MA). Cependant, nous ne savons pas si l’atrophie du CC est associéàes changements spéfiques du volume cortical dans la MA. De plus, on n’a jamais examiné’il existait une atrophie des commissures extra-calleuses. Le but de cette éde éit de quantifier l’atrophie au niveau de deux commissures cébrales {le CC et la commissure antéeure (CA)}, de corrér cette mesure à’ét cognitif et de relier la taille commissurale àes mesures indéndantes du volume du lobe temporal chez des patients atteints de MA.

Méthodes et Résultats:

Un éantillon de patients atteints de la MA et de sujets contrô appariépour l’â et le niveau d’écation (CNs) ont subi une RMN et une éluation de la fonction cognitive au moyen de l’éelle de la dénce et du Mini-examen de l’ét mental. Les zones sagittales méanes du CC et la CA ont é mesuré ainsi que le volume des lobes temporaux supéeurs, moyens et inféeurs.

Réltats:

Les patients atteints de la MA avaient une mesure du CC significativement plus petite que les CNs. Les réons du CC les plus atteintes dans la MA comprenaient la partie moyenne du corps, l’isthme et le genou. L’isthme et la réon moyenne du CC éient positivement corrés àa performance cognitive et au volume du lobe temporal supéeur chez les patients atteints de la MA. La réon sagittale moyenne de la CA et les volumes temporaux supéeurs n’éient pas diffénts chez les patients atteints de la MA et les CNs.

Conclusions:

Cette éde déntre que la morphologie réonale du CC est corrée à’ét cognitif et à’atrophie du lobe temporal dans la MA. De plus, l’absence de diffénce au niveau de la CA suggè que l’atrophie commissurale dans la MA est spéfique àa réon.

Type
Original Articles
Copyright
Copyright © The Canadian Journal of Neurological 2000

References

1. Tomasch, J. Size, distribution, and number of fibres in the human corpus callosum. Anat Rec 1954; 119: 119135.CrossRefGoogle ScholarPubMed
2. Pandya, DN, Seltzer, B. The topography of commissural fibers. In: Lepor, F, Ptito, M, Jasper, HH, eds. Two Hemispheres – One Brain: Functions of the Corpus Callosum. New York: Alan R Liss Inc, 1986: 4773.Google Scholar
3. DeLacoste, MC, Kirkpatrick, JB, Ross, ED. Topography of the human corpus callosum. J Neuropath Exp Neurol 1985: 44: 578591.CrossRefGoogle Scholar
4. Witelson, SF. Hand and sex differences in the isthmus and genu of the human corpus callosum: a postmortem morphological study. Brain 1989; 112: 799835.CrossRefGoogle ScholarPubMed
5. Brun, A, Gustafson, L. Distribution of cerebral degeneration in Alzheimer’s disease: a clinico-pathological study. Arch Psych Neurol Sci 1976; 223: 1533.Google ScholarPubMed
6. Foster, N, Chase, TN, Mansi, L, et al. Cortical abnormalities in Alzheimer’s disease. Ann Neurol 1984; 16: 649654.CrossRefGoogle ScholarPubMed
7. Haxby, JV, Grady, CL, Koss, E, et al. Longitudinal study of cerebral metabolic asymmetries and associated neuropsychological patterns in early dementia of the Alzheimer’s type. Arch Neurol 1990; 47: 753760.CrossRefGoogle Scholar
8. Lewis, DA, Campbell, MJ, Terry, RD, Morrison, JH. Laminar and regional distributions of neurofibrillary tangles and neuritic plaques in Alzheimer’s disease: a quantitative study of visual and auditory cortices. J Neurosci 1987; 7: 17991808.CrossRefGoogle ScholarPubMed
9. Innocenti, GM. What is so special about callosal connections?. In: Lepor, F, Ptito, M, Jasper, HH, eds. Two Hemispheres – One Brain: Functions of the Corpus Callosum. New York: Alan R Liss Inc, 1986: 7581.Google Scholar
10. Wiess, S, Jellinger, K, Wenger, E. Morphometry of the corpus callosum in normal aging and Alzheimer’s Disease. J Neural Transm 1991; 33:3538.Google Scholar
11. Vermersch, P, Scheltens, P, Barkhorn, F, Steinling, M, Leys, D. Evidence for atrophy of the corpus callosum in Alzheimer–s disease. Eur Neurol 1993; 34: 8386.CrossRefGoogle Scholar
12. Biegon, A, Eberling, JL, Richardson, BC, et al. Human corpus callosum in aging and Alzheimer’s disease: a magnetic resonance imaging study. Neurobiol Aging 1994; 15: 393397.CrossRefGoogle ScholarPubMed
13. Lyoo, IK, Satlin, A, Lee, CK, Renshaw, PF. Regional atrophy of the corpus callosum in subjects with Alzheimer’s disease and multi-infarct dementia. Psych Res 1997; 74: 6372.Google ScholarPubMed
14. Yamauchi, H, Fukuyama, H, Harada, K, et al. Callosal atrophy parallels decreased cortical oxygen metabolism and neuropsychological impairment in Alzheimer’s disease. Arch Neurol 1993; 50: 10701074.CrossRefGoogle ScholarPubMed
15. Janowsky, JS, Kaye, JA, Carper, RA. Atrophy of the corpus callosum in Alzheimer’s disease versus healthy aging. J Amer Ger Soc 1996; 44: 798803.CrossRefGoogle ScholarPubMed
16. Kaufer, DI, Miller, BL, Itti, L, et al. Midline cerebral morphometry distinguishes frontotemporal dementia and Alzheimer’s disease. Neurology 1997;48: 978985.CrossRefGoogle ScholarPubMed
17. Teipel, SJ, Hampel, H, Pietrini, P, et al. Region-specific corpus callosum atrophy correlates with the regional pattern of cortical glucose metabolism in Alzheimer disease. Arch Neurol 1999; 56:467473.CrossRefGoogle ScholarPubMed
18. Teipel, SJ, Hampel, H, Alexander, GE, et al. Dissociation between corpus callosum atrophy and white matter pathology in Alzheimer’s disease. Neurology 1998; 51: 13811385.CrossRefGoogle ScholarPubMed
19. Hampel, H, Teipel, SJ, Alexander, GE, et al. Corpus callosum atrophy is a possible indicator of region- and cell type-specific neuronal degeneration in Alzheimer’s disease. Arch Neurol 1998; 55: 193198.CrossRefGoogle Scholar
20. Thompson, PM, Moussai, J, Zohoori, S, et al. Cortical variability and asymmetry in normal aging and Alzheimer’s disease. Cerebr Cortex 1998; 8: 492509.CrossRefGoogle ScholarPubMed
21. Jouanet, ML, Gazzaniga, MS. Cortical field origin of the anterior commissure of the rhesus monkey. Exp Neurol 1979; 66: 381397.CrossRefGoogle Scholar
22. Pandya, DN, Karol, EA, Lele, PP. The distribution of the anterior commissure in the squirrel monkey. Brain Res 1973; 49: 177180.CrossRefGoogle ScholarPubMed
23. Brun, A, Englund, E. Regional pattern of degeneration in Alzheimer’s disease: neuronal loss and histopathological grading. Histopathology 1981; 5: 549564.CrossRefGoogle ScholarPubMed
24. McKhann, G, Drachman, D, Folstein, M, et al. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ARDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology 1984; 34: 939944.CrossRefGoogle Scholar
25. Mattis, S. Mental status examination for organic mental syndrome in the elderly patient. In: Bellak, L, Karasu, TB, eds. Geriatric Psychiatry: A Handbook for Psychiatrists and Primary Care Physicians. New York: Grune & Stratton, 1976: 77121.Google Scholar
26. Folstein, MF, Folstein, SE, McHugh, PR. “Mini-Mental State”: a practical method for grading the cognitive state of patients for the clinician. J Psych Res 1975; 12: 189198.CrossRefGoogle ScholarPubMed
27. Talairach, J, Tournoux, P. Co-Planar Stereotaxic Atlas of the Human Brain—3 - Dimensional Proportional System: An Approach to Cerebral Imaging. New York: Thieme Medical Publisher Inc., 1988.Google Scholar
28. Jack, CR Jr, Gehring, DG, Sharbrough, FW, et al. Temporal lobe volume measurement from MR images: accuracy and left-right asymmetry in normal persons. J Comput Assist Tomogr 1988;12:2129.CrossRefGoogle ScholarPubMed
29. Kidron, D, Black, SE, Stanchev, P et al. Quantitative MR volumetry in Alzheimer’s disease. Neurology 1997; 49: 15041512.CrossRefGoogle ScholarPubMed
30. Seltzer, B, Pandya, DN. The distribution of posterior parietal fibres in the corpus callosum of the rhesus monkey. Exp Brain Res 1983; 49: 147150.CrossRefGoogle ScholarPubMed
31. Weiss, S, Kimbacher, M, Wenger, E, Neuhold, A. Morphometric analysis of the corpus callosum using MR: correlation of measurements with aging in healthy individuals. Am J Neuroradiol 1993; 14: 637645.Google Scholar
32. Driesen, NR, Raz, N. The influence of sex, age and handedness on corpus callosum morphology: a meta-analysis. Psychobiology 1995; 23: 240247.CrossRefGoogle Scholar
33. Brun, A, Englund, E. A white matter disorder in dementia of the Alzheimer’s type: a pathoanatomical study. Ann Neurol 1986; 8: 421426.Google Scholar
34. Braak, H, Braak, E, Bohl, J. Staging of Alzheimer-related cortical destruction. Eur Neurol 1993; 33: 403408.CrossRefGoogle ScholarPubMed