Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-23T19:40:46.921Z Has data issue: false hasContentIssue false

Biphasic Opening of the Blood-Brain Barrier Following Transient Focal Ischemia: Effects of Hypothermia

Published online by Cambridge University Press:  02 December 2014

Z. Gao Huang
Affiliation:
Alberta Stroke Program, Department of Clinical Neurosciences, University of Calgary, Alberta Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
Dong Xue
Affiliation:
Alberta Stroke Program, Department of Clinical Neurosciences, University of Calgary, Alberta Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
Hasneen Karbalai
Affiliation:
Alberta Stroke Program, Department of Clinical Neurosciences, University of Calgary, Alberta
Alastair M. Buchan
Affiliation:
Alberta Stroke Program, Department of Clinical Neurosciences, University of Calgary, Alberta
Z. Gao Huang
Affiliation:
Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
Dong Xue
Affiliation:
Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
Edward Preston
Affiliation:
Institute for Biological Sciences, National Research Council, Ottawa, Ontario, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Objective:

Tracer constants (Ki) for blood-to-brain diffusion of sucrose were measured in the rat to profile the time course of blood-brain barrier injury after temporary focal ischemia, and to determine the influence of post-ischemic hypothermia.

Methods:

Spontaneously hypertensive rats were subjected to transient (2 hours) clip occlusion of the right middle cerebral artery. Reperfusion times ranged from 1.5 min to 46 hours, and i.v. 3H-sucrose was circulated for 30 min prior to each time point (1h, 4h, 22h, and 46h; n=5-7 per time point). Ki was calculated from the ratio of parenchymal tracer uptake and the time-integrated plasma concentration. Additional groups of rats (n=7-8) were maintained either normothermic (37.5oC) or hypothermic (32.5oC or 28.5oC) for the first 6 hours of reperfusion, and Ki was measured at 46 hours.

Results:

Rats injected after 1.5 - 2 min exhibited a 10-fold increase in Ki for cortical regions supplied by the right middle cerebral artery (p<0.01). This barrier opening had closed within 1 to 4 hours post-reperfusion. By 22 hours, the blood-brain barrier had re-opened, with further opening 22 and 46 hours (p<0.01), resulting in edema. Whole body hypothermia (28oC-29oC) during the first six hours of reperfusion prevented opening, reducing Ki by over 50% (p<0.05).

Conclusion:

Transient middle cerebral artery occlusion evokes a marked biphasic opening of the cortical blood-brain barrier, the second phase of which causes vasogenic edema. Hypothermic treatment reduced infarct volume and the late opening of the blood-brain barrier. This opening of the blood-brain barrier may enhance delivery of low permeability neuroprotective agents.

Résumé

RÉSUMÉObjectif:

Nous avons mesuré les constantes d’un traceur (Ki) de la diffusion de sucrose du sang vers le cerveau chez le rat afin d’observer l’évolution des dommages subis par la barrière hémato-encéphalique après une ischémie focale temporaire et pour déterminer les effets d’une hypothermie postischémique.

Méthodes:

Des rats spontanément hypertendus ont été soumis à une occlusion de deux heures de l’artère cérébrale moyenne par un clip. Le temps de reperfusion variait de 1.5 minute à 46 heures et une perfusion intraveineuse de 3H-sucrose a été administrée pendant 30 minutes avant chaque évaluation ponctuelle (1h, 4h, 22h, et 46h; n=5-7 par évaluation ponctuelle). La constante Ki a été calculée à partir de l’indice de captation du traceur par le parenchyme et de la concentration plasmatique en fonction du temps. Des groupes additionnels de rats (n=7-8) ont été maintenus soit à la température normale (37.5±C) ou en hypothermie (32.5±C ou 28.5±C) pendant les 6 premières heures de la reperfusion et Ki a été mesurée à 46 heures.

Résultats:

Les rats qui ont reçu l’injection après 1.5 – 2 minutes présentaient une augmentation de Ki de dix fois supérieure dans les régions corticales irriguées par l’artère cérébrale moyenne (p<0.01). Cette ouverture de la barrière s’était refermée 1 à 4 heures post-reperfusion. À 22 heures, la barrier hémato-encéphalique s’était réouverte, davantage à 22 et à 46 heures (p<0.01), ce qui a donné lieu à de l’oedème. L’hypothermie généralisée (28±C - 29±C) pendant les 6 premières heures de la reperfusion a empêché son ouverture, diminuant ainsi la constante Ki de plus de 50% (p<0.05).

Conclusions:

L’occlusion transitoire de l’artère cérébrale moyenne provoque une ouverture biphasique importante de la barrière hémato-encéphalique corticale don’t la deuxième phase cause de l’oedème. L’hypothermie a diminué la taille de l’infarctus cérébral et l’ouverture tardive de la barrière hémato-encéphalique. Cette ouverture de la barrière hémato-encéphalique peut accroître la distribution d’agents neuroprotecteurs à basse perméabilité.

Type
Experimental Neurosciences
Copyright
Copyright © The Canadian Journal of Neurological 1999

References

1. Rapoport, SI. Sites and function of the blood-brain barrier. In:Rapoport, SI, ed. Blood-Brain Barrier in Physiology and Medicine. New York: Raven Press, 1976: 4386.Google Scholar
2. Betz, AL. Oxygen free radicals and the brain microvasculature. In:Pardridge, WM, ed. The Blood-Brain Barrier. Cellular and Molecular Biology. New York: Raven Press, 1993: 303321.Google Scholar
3. Betz, AL, Keep, RF, Beer, ME, Ren, X-d. Blood-brain barrierpermeability and brain content of sodium, potassium and chloride during focal ischemia. J Cereb Blood Flow Metab 1994; 14: 2937.CrossRefGoogle Scholar
4. Klatzo, I. Concept of ischemic injury associated with brain edema. In: Inaba, Y, Klatzo, I, Spatz, M, eds. Brain Edema. Tokyo: Springer, 1984: 15.Google Scholar
5. Brint, S, Jacewicz, M, Kiessling, M, Tanabe, J, Pulsinelli, W. Focalbrain ischemia in the rat: methods for reproducible neocortical infarction using tandem occlusion of the distal middle cerebral and ipsilateral common carotid arteries. J Cereb Blood FlowMetab 1988; 8: 474485.Google Scholar
6. Buchan, AM, Xue, D, Slivka, A. A new model of temporary focalneocortical ischemia in the rat. Stroke 1992; 23: 273279.Google Scholar
7. Kaplan, B, Brint, S, Tanabe, J, Jacewicz, M, Wang, X-J, Pulsinelli, W. Temporal thresholds for neocortical infarction in rats subjected to reversible focal cerebral ischemia. Stroke 1991; 22: 10321039.Google Scholar
8. Preston, E, Allen, M, Haas, N. A modified method for measurement ofradiotracer permeation across the rat blood-brain barrier: the problem of correcting brain uptake for intravascular tracer. J Neurosci Meth 1983; 9:4555.Google Scholar
9. Ohno, K, Pettigrew, KD, Rapoport, SI. Lowerlimits ofcerebrovascular permeability to nonelectrocytes in the consciousrat. Am J Physiol 1978; 235: H299–H307.Google Scholar
10. Preston, E, Haas, N. Defining the lower limits of blood-brain barrierpermeability: factors affecting the magnitude and interpretation of permeability-area products. J Neurosci Res 1986; 6: 709716.Google Scholar
11. Xue, D, Huang, ZG, Smith, KE, Buchan, AM. Immediate or delayedmild hypothermia prevents focal cerebral infarction. Brain Res 1992; 587: 6672.Google Scholar
12. Ishimaru, S, Hossman, KA. Relationship between cerebral bloodflow and blood-brain barrier permeability of sodium and albumin in cerebral infarcts of rats. Acta Neurochir 1990; 51(S): 216219.Google Scholar
13. Kuroiwa, T, Ting, P, Klatzo, I. The biphasic opening of the blood-brain barrier to proteins following temporary middle cerebral artery occlusion. Acta Neuropathol 1985; 68: 122129.CrossRefGoogle ScholarPubMed
14. Westergaard, E, van Deurs, B, Brondsted, HE. Increased vesiculartransfer of horseradish peroxidase across cerebral endothelium, evoked by acute hypertension. Acta Neuropathol 1977; 37: 141152.CrossRefGoogle ScholarPubMed
15. Nagy, Z, Mathieson, G, Huttner, I. Blood-brain barrier opening tohorseradish peroxidase in acute arterial hypertension. Acta Neuropathol 1979; 48: 4553.Google Scholar
16. Cole, DJ, Matsumura, JS, Drummond, JC, Schultz, RL, Wong, MH. Time – and pressure-dependent changes in blood-brain barrier permeability after temporary middle cerebral artery occlusion inrats. Acta Neuropathol 1991; 82: 266273.Google Scholar
17. Buchan, AM, Xue, D, Huang, ZG, Smith, KE, Lesiuk, H. Delayed AMPA receptor blockade reduces cerebral infarction induced by focal ischemia. Neuro Report 1991; 2: 473476.Google ScholarPubMed
18. Hsu, CY, Liu, TH, Xu, J, et al. Arachodonic acid and its metabolitesin cerebral ischemia. Ann NY Acad Sci 1989; 559: 282295.Google Scholar
19. Hsu, CY, Liu, TH, Xu, J, Hogan, EL, Chao, J. Lipid inflammatorymediators in ischemic brain edema and injury. In: Bazan, NG ed. Lipid Inflammatory Mediators in Ischemic Brain Damage and Experimental Epilepsy. New Trends Lipid Mediators Research. Basel: Karger, 1990: 85112.Google Scholar
20. Wahl, M, Unterberg, A, Baethmann, A, Schilling, L. Mediators of blood-brain barrier dysfunction and formation of vasogenic brainedema. J Cereb Blood Flow Metab 1988; 8: 621634.Google Scholar
21. Ginsberg, MD, Sternau, LL, Globus, MYT, Dietrich, WD, Busto, R. Therapeutic modulation of brain temperature: relevance to ischemic brain injury. Cerebrovasc Brain Metab Rev 1992; 4: 189225.Google ScholarPubMed
22. Dempsey, RJ, Combs, DJ, Edwards, MM. Moderate hypothermiareduces post-ischemic edema development and leukotriene production. Surgery 1987; 21: 177181.Google Scholar
23. Busto, R, Dietrich, WD, Globus, MY, Ginsberg, MD. Postischemichypothermia inhibits CA1 hippocampal ischemic neuronal injury. Neurosci Lett 1989a; 101: 299304.CrossRefGoogle ScholarPubMed
24. Dietrich, WD, Halley, M, Valdes, I, Busto, R. Interrelationshipbetween increased vascular permeability and acute neuronal damage following temperature controlled brain ischemia in rats. Acta Neuropathol 1991; 81: 615625.CrossRefGoogle Scholar
25. Busto, R, Globus, MYT, Dietrich, WD, et al. Effects of mildhypothermia on ischemia-induced release of neurotransmitter and free fatty acids in rat brain. Stroke 1989b; 20: 904910.CrossRefGoogle Scholar
26. Osuga, H, Hakim, AM. The changes in extracellular glutamateconcentration during focal ischemia in rat. Can J Neurol Sci 1992; 19: 301302.Google Scholar
27. Butcher, SP, Bullock, R, Graham, DI, McCulloch, J. Correlationbetween amino acid release and neuropathologic outcome in rat brain following middle cerebral artery occlusion. Stroke 1990; 21: 17271733.Google Scholar
28. Preston, E, Sutherland, G, Finsten, A. Three openings of the blood-brain barrier produced by forebrain ischemia in the rat. NeurosciLett 1992; 149: 7578.Google Scholar