Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-23T21:03:41.380Z Has data issue: false hasContentIssue false

ApolipoproteinE and Alzheimer's Disease: a Genetic, Molecular and Neuroimaging Review

Published online by Cambridge University Press:  05 August 2019

R.H. Swartz
Affiliation:
Cognitive Neurology Unit, Sunnybrook Health Science Centre, Division of Neurology and Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
S.E. Black*
Affiliation:
Cognitive Neurology Unit, Sunnybrook Health Science Centre, Division of Neurology and Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
P. St. George-Hyslop
Affiliation:
Cognitive Neurology Unit, Sunnybrook Health Science Centre, Division of Neurology and Center for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
*
Reprint requests to: Dr. S.E. Black, Cognitive Neurology Unit, A421, Sunnybrook Health Science Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Alzheimer's disease (AD) is the most common cause of dementia in the elderly and an increasingly significant health concern in our aging population. In the past 10 years, our understanding of this disease has increased dramatically. While the discovery of three rare genetic mutations that can cause AD has provided much information about the causes and progression of the disease, a great deal of attention has been focused on apolipoprotien (ApoE) because of its involvement in the more common, later onset form of AD. Due to the rapid pace of recent advances, it has not been easy for health care professionals, researchers and the general public to keep abreast of these developments. This paper reviews recent research in ApoE and late-onset AD, emphasizing molecular neuropathological, genetic and neuroimaging findings and highlighting current controversies that remain to be addressed.

Résumé:

Résumé:

La maladie d'Alzheimer (MA) est la cause la plus fréquente de démence chez les gens âgés et elle est une préoccupation de plus en plus importante en ce qui concerne la santé dans notre population vieillissante. Au cours des 10 dernières années, notre compréhension de cette maladie a augmenté considerablement. Bien que la découverte de trois mutations rares pouvant causer la MA a fourni beaucoup d'attention à cause de son implication dans la forme plus commune de la MA, la MA à début plus tardif. À cause du rythme rapide des progrès, il n'a pas été facile pour les professionnels de la santé, les chercheurs et le public en général de se tenir à date sur ces développements. Cet article revoit les recherches récentes sur la MA à début tardif et l'ApoE, en mettant l'emphase sur les observations moléculaires, neuropathologiques, génétiques et neuroradiologiques et souligne les controverses actuelles qui ne sont pas encore résolues.

Type
Review Article
Copyright
Copyright © The Canadian Journal of Neurological 1999

References

1. Black, SE. Focal cortical atrophy syndromes. Brain and Cognition 1996; 31: 188229.Google Scholar
2. Khachaturian, ZS. Diagnosis of Alzheimer’s disease. Arch Neurol 1985; 42: 10971105.Google Scholar
3. Canadian Study of Health and Aging Working Group. Canadian study of health and aging: study methods and prevalence of dementia. Can Med Assoc J 1994; 150: 899913.Google Scholar
4. Ebly, EM, Parhad, IM, Hogan, DB, Fung, TS. Prevalence and types of dementia in the very old: results from the Canadian Study of Health and Aging. Neurology 1994; 44: 15931600.Google Scholar
5. Ostbye, T, Crosse, E. Net economic costs of dementia in Canada. Can Med Assoc J 1994; 151: 14571464.Google Scholar
6. Canadian Study of Health and Aging Working Group. The Canadian Study of Health and Aging: risk factors for Alzheimer’s disease in Canada. Neurology 1994; 44: 20732080.Google Scholar
7. Ott, A, Slooter, AJ, Hofman, A, et al. Smoking and risk of dementia and Alzheimer’s disease in a population-based cohort study: the Rotterdam Study. Lancet 1998; 351: 18401843.Google Scholar
8. Breitner, JC, Welsh, KA, Helms, MJ, et al. Delayed onset of Alzheimer’s disease with nonsteroidal anti- inflammatory and histamine H2 blocking drugs. Neurobiol Aging 1995; 16: 523530.Google Scholar
9. Tang, MX, Jacobs, D, Stern, Y, et al. Effect of oestrogen during menopause on risk and age at onset of Alzheimer’s disease. Lancet 1996; 348: 429432.Google Scholar
10. Birge, SJ. The role of estrogen in the treatment of Alzheimer’s disease. Neurology 1997; 48 (Suppl. 7): S36–S41.Google Scholar
11. Marz, W, Scharnagl, H, Kirca, M, et al. Apolipoprotein E polymor-phism is associated with both senile plaque load and Alzheimer-type neurofibrillary tangle formation. Ann NY Acad Sci 1996; 777: 276280.Google Scholar
12. Gearing, M, Mirra, SS, Hedreen, JC, et al. The consortium to estab-lish a registry for Alzheimer’s disease (CERAD). Part X. Neuropathology confirmation of the clinical diagnosis of Alzheimer’s disease. Neurology 1995; 45: 461466.Google Scholar
13. Braak, H, Braak, E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 1991; 82: 239259.Google Scholar
14. Hyman, BT., New Neuropathological criteria for Alzheimer disease. Arch Neurol 1998; 55: 11741176.Google Scholar
15. Funato, H, Yoshimura, M, Kusui, K, et al. Quantitation of amyloid beta-protein (A beta) in the cortex during aging and in Alzheimer’s disease. Am J Pathol 1998; 152: 16331640.Google Scholar
16. Selkoe, DJ. Alzheimer’s disease: genotypes, phenotypes, and treat-ments. Science 1997; 275: 630631.Google Scholar
17. Strittmatter, WJ, Roses, AD. Apolipoprotein E and Alzheimer dis-ease. Proc Natl Acad Sci USA 1995; 92: 47254727.Google Scholar
18. Hyman, BT, West, HL, Rebeck, GW, et al. Quantitative analysis of senile plaques in Alzheimer disease: observation of log-normal size distribution and molecular epidemiology of differences associated with apolipoprotein E genotype and trisomy 21 (Down syndrome). Proc Natl Acad Sci USA 1995; 92: 35863590.Google Scholar
19. Ma, J, Yee, A, Brewer, HB Jr., Das, S, Potter, H. Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature 1994; 372: 9294.Google Scholar
20. Hyman, BT, Van Horsen, GW, Damasio, AR, Barnes, CL. Alzheimer’s disease: cell-specific pathology isolates the hip-pocampal formation. Science 1984; 225: 11681170.Google Scholar
21. Gomez-Isla, T, Hollister, R, West, H, et al. Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer’s disease. Ann Neurol 1997; 41: 1724.Google Scholar
22. Gomez-Isla, T, West, HL, Rebeck, GW, et al. Clinical and pathologi-cal correlates of apolipoprotein E epsilon 4 in Alzheimer’s disease. Ann Neurol 1996; 39: 6270.Google Scholar
23. Caramelli, P, Robitaille, Y, Cholette, AL, et al. Clinicopathological study in Alzheimer’s disease: senile plaques correlate with profiles of cognitive impairment. In: Iqbal, K, Winblad, B, Nishimura, T, Takeda, M, Wisniewski, HM, eds. Alzheimer’s Disease: Biology, Diagnosis and Therapeutics. Chichester: John Wiley & Sons Ltd., 1997: 267274.Google Scholar
24. Braak, H, Braak, E. Alzheimer neuropathology and limbic circuits. In: Vogt, BA, Gabriel, M, eds. Neurobiology of Cingulate Cortex and Limbic Thalamus: a Comprehensive Handbook. Boston: Birkhauser, 1993: 606626.Google Scholar
25. Braak, H, Braak, E, Bohl, J. Staging of Alzheimer-related cortical destruction. Eur Neurol 1993; 33: 403408.Google Scholar
26. Braak, H, Braak, E. Staging of Alzheimer’s disease-related neurofib-rillary changes. Neurobiol Aging 1995; 16: 271284.Google Scholar
27. Terry, RD, Masliah, E, Salmon, DP, et al. Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 1991; 30: 572580.Google Scholar
28. DeKosky, ST, Scheff, SW. Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 1990; 27: 457464.Google Scholar
29. Brun, A, Gustafson, L. Distribution of cerebral degeneration in Alzheimer’s disease. A clinico-pathological study. Arch Psychiat Nervenkr 1976; 223: 1533.Google Scholar
30. Whitehouse, PJ, Price, DL, Clark, AW, Coyle, JT, DeLong, MR. Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 1981; 10: 122126.Google Scholar
31. Whitehouse, PJ, Price, DL, Struble, RG, et al. Alzheimer’s disease and senile dementia: loss of neurons in the basal forebrain. Science 1981; 215: 12371239.Google Scholar
32. Rogers, SL, Farlow, MR, Doody, RS, Mohs, R, Friedhoff, LT. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Donepezil Study Group.Neurology 1998; 50: 136145.Google Scholar
33. Morris, JC, Cyrus, PA, Orazem, J, et al. Metrifonate benefits cogni-tive, behavioral, and global function in patients with Alzheimer’s disease. Neurology 1998; 50: 12221230.Google Scholar
34. Rogers, SL, Friedhoff, LT. Long-term efficacy and safety of denepezil in the treatment of Alzheimer’s disease: an interim analysis of the results of a US multicenter open label extension study. Eur Neuropsychopharmacol 1998; 8(1): 6775.Google Scholar
35. Simpkins, JW, Green, PS, Gridley, KE, et al. Role of estrogen replacement therapy in memory enhancement and the prevention of neuronal loss associated with Alzheimer’s disease. Am J Med 1997; 103: 19S25S.Google Scholar
36. Schneider, LS, Farlow, MR, Henderson, VW, Pogoda, JM. Effects of estrogen replacement therapy on response to tacrine in patients with Alzheimer’s disease. Neurology 1996; 46: 15801584.Google Scholar
37. Henderson, VW. The epidemiology of estrogen replacement therapy and Alzheimer’s disease. Neurology 1997; 48 (Suppl. 7): S27–S35.Google Scholar
38. Marcusson, J, Rother, M, Kittner, B, et al. A 12-month, randomized, placebo-controlled trial of propentofylline (HWA 285) in patients with dementia according to DSM III-R. Dement Geriatr Cogn Disord 1997; 8: 320328.Google Scholar
39. Rossor, MN, Fox, NC, Freeborough, PA, Harvey, RJ. Clinical features of sporadic and familial Alzheimer’s disease. Neurodegeneration 1996; 5: 393397.Google Scholar
40. Nagy, Z, Jobst, KA, Esiri, MM, et al. Hippocampal pathology reflects memory deficit and brain imaging measurements in Alzheimer’s disease: clinicopathologic correlations using three sets of pathologic diagnostic criteria. Dementia 1996; 7: 7681.Google Scholar
41. Nagy, Z, Esiri, MM, Jobst, KA, et al. Clustering of pathological fea-tures in Alzheimer’s disease: clinical and neuroanatomical aspects. Dementia 1996; 7: 121127.Google Scholar
42. Nagy, Z, Esiri, MM, Jobst, KA, et al. Relative roles of plaques and tangles in the dementia of Alzheimer’s disease: correlations using three sets of neuropathological criteria. Dementia 1995; 6: 2131.Google Scholar
43. Ohm, TG, Muller, H, Braak, H, Bohl, J. Close-meshed prevalence rates of different stages as a tool to uncover the rate of Alzheimer’s disease-related. neurofibrillary changes. Neuroscience 1995; 64: 209217.Google Scholar
44. Bird, TD. Clinical genetics of familial alzheimer’s disease. In: Terry, RD, Katzman, R, Bick, KL, eds. Alzheimer Disease. New York: Raven Press Ltd., 1994: 6574.Google Scholar
45. Holder, JL, Habbak, RA, Pearlson, GD, et al. Reduced survival of apolipoprotein E4 homozygotes in Down’s syndrome? Neuroreport 1996; 7: 24552456.Google Scholar
46. Lendon, CL, Ashall, F, Goate, AM. Exploring the etiology of Alzheimer disease using molecular genetics. JAMA 1997; 277: 825831.Google Scholar
47. Corder, EH, Saunders, AM, Risch, NJ, et al. Protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet 1994; 7: 180184.Google Scholar
48. Sherrington, R, Froelich, S, Sorbi, S, et al. Alzheimer’s disease asso-ciated with mutations in presenilin 2 is rare and variably penetrant. Hum Mol Genet 1996; 5: 985988.Google Scholar
49. Kamino, K, Sato, S, Sakaki, Y, et al. Three different mutations of pre-senilin 1 gene in early-onset Alzheimer’s disease families. Neurosci Lett 1996; 208: 195198.Google Scholar
50. Murphy, GM Jr., Forno, LS, Ellis, WG, et al. Antibodies to presenilin proteins detect neurofibrillary tangles in Alzheimer’s disease. Am J Pathol 1996; 149: 18391846.Google Scholar
51. Poirier, J, Delisle, MC, Quirion, R, et al. Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc Natl Acad Sci USA 1995; 92: 1226012264.Google Scholar
52. Poirier, J. Apolipoprotein E in animal models of CNS injury and in Alzheimer’s disease. Trends Neurosci 1994; 17: 525530.Google Scholar
53. Poirier, J, Davignon, J, Bouthillier, D, et al. Apolipoprotein E poly-morphism and Alzheimer’s disease. Lancet 1993; 342: 697699.Google Scholar
54. Saunders, AM, Strittmatter, WJ, Schmechel, D, et al. Association of apolipoprotein E allele epsilon 4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993; 43: 14671472.Google Scholar
55. Corder, EH, Saunders, AM, Strittmatter, WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261: 921923.Google Scholar
56. Hyman, BT, Gomez-Isla, T, West, H, et al. Clinical and neuropatho-logical correlates of apolipoprotein E genotype in Alzheimer’s disease. Window on molecular epidemiology. Ann NY Acad Sci 1996; 777: 158165.Google Scholar
57. Hyman, BT, Gomez-Isla, T, Rebeck, GW, et al. Epidemiological, clinical, and neuropathological study of apolipoprotein E genotype in Alzheimer’s disease. Ann NY Acad Sci 1996; 802: 1––5.Google Scholar
58. Duara, R, Barker, WW, Lopez-Alberola, R, et al. Alzheimer’s disease: interaction of apolipoprotein E genotype, family history of dementia, gender, education, ethnicity, and age of onset. Neurology 1996; 46: 15751579.Google Scholar
59. West, HL, Rebeck, GW, Hyman, BT. Frequency of the apolipoprotein E epsilon 2 allele is diminished in sporadic Alzheimer disease. Neurosci Lett 1994; 175: 4648.Google Scholar
60. Myers, RH, Schaefer, EJ, Wilson, PW, et al. Apolipoprotein E epsilon4 association with dementia in a population-based study: the Framingham study. Neurology 1996; 46: 673677.Google Scholar
61. Roses, AD. Apolipoprotein E alleles as risk factors in Alzheimer’s disease. Ann Rev Med 1996; 47: 387400.Google Scholar
62. Nalbantoglu, J, Gilfix, BM, Bertrand, P, et al. Predictive value of apolipoprotein E genotyping in Alzheimer’s disease: results of an autopsy series and an analysis of several combined studies. Ann Neurol 1994; 36: 889895.Google Scholar
63. Strittmatter, WJ, Saunders, AM, Schmechel, D, et al. Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 1993; 90: 19771981.Google Scholar
64. Bickeboller, H, Campion, D, Brice, A, et al. Apolipoprotein E and Alzheimer disease: genotype-specific risks by age and sex. Am J Hum Genet 1997; 60: 439446.Google Scholar
65. Tang, MX, Maestre, G, Tsai, WY, et al. Relative risk of Alzheimer disease and age-at-onset distributions, based on APOE genotypes among elderly African Americans, Caucasians, and Hispanics in New York City. Am J Hum Genet 1996; 58: 574584.Google Scholar
66. Locke, PA, Conneally, PM, Tanzi, RE, Gusella, JF, Haines, JL. Apolipoprotein E4 allele and Alzheimer disease: examination of allelic association and effect on age at onset in both early- and late-onset cases. Genet Epidemiol 1995; 12: 8392.Google Scholar
67. Mayeux, R, Stern, Y, Ottman, R, et al. The apolipoprotein epsilon 4 allele in patients with Alzheimer’s disease. Ann Neurol 1993; 34: 752754.Google Scholar
68. Brousseau, T, Legrain, S, Berr, C, et al. Confirmation of the epsilon 4 allele of the apolipoprotein E gene as a risk factor for late-onset Alzheimer’s disease. Neurology 1994; 44: 342344.Google Scholar
69. Peacock, ML, Fink, JK. ApoE epsilon 4 allelic association with Alzheimer’s disease: independent confirmation using denaturing gradient gel electrophoresis. Neurology 1994; 44: 339341.Google Scholar
70. Tsai, MS, Tangalos, EG, Petersen, RC, et al. Apolipoprotein E: risk factor for Alzheimer disease. Am J Hum Genet 1994; 54: 643649.Google Scholar
71. Richey, PL, Siedlak, SL, Smith, MA, Perry, G. Apolipoprotein E inter-action with the neurofibrillary tangles and senile plaques in Alzheimer disease: implications for disease pathogenesis. Biochem Biophys Res Commun 1995; 208: 657663.Google Scholar
72. Strittmatter, WJ, Weisgraber, KH, Huang, DY, et al. Binding of human apolipoprotein E to synthetic amyloid beta peptide: iso-form-specific effects and implications for late-onset Alzheimer disease. Proc Natl Acad Sci USA 1993; 90: 80988102.Google Scholar
73. Yamaguchi, H, Ishiguro, K, Sugihara, S, et al. Presence of apolipoprotein E on extracellular neurofibrillary tangles and on meningeal blood vessels precedes the Alzheimer beta-amyloid deposition. Acta Neuropathol (Berl) 1994; 88: 413419.Google Scholar
74. Sheng, JG, Mrak, RE, Griffin, WS. Apolipoprotein E distribution among different plaque types in Alzheimer’s disease: implications for its role in plaque progression. Neuropathol Appl Neurobiol 1996; 22: 334341.Google Scholar
75. Holtzman, DM, Pitas, RE, Kilbridge, J, et al. Low density lipoprotein receptor-related protein mediates apolipoprotein E-dependent neurite outgrowth in a central nervous system-derived neuronal cell line. Proc Natl Acad Sci USA 1995; 92: 94809484.Google Scholar
76. Sanan, DA, Weisgraber, KH, Russell, SJ, et al. Apolipoprotein E associates with beta amyloid peptide of Alzheimer’s disease to form novel monofibrils. Isoform apoE4 associates more efficiently than apoE3.J Clin Invest 1994; 94: 860869.Google Scholar
77. LaDu, MJ, Falduto, MT, Manelli, AM, et al. Isoform-specific bind-ing of apolipoprotein E to beta-amyloid. J Biol Chem 1994; 269: 2340323406.Google Scholar
78. Schmechel, DE, Saunders, AM, Strittmatter, WJ, et al. Increased amyloid beta-peptide deposition in cerebral cortex as a consequence of apolipoprotein E genotype in late-onset Alzheimer disease. Proc Natl Acad Sci USA 1993; 90: 96499653.Google Scholar
79. Polvikoski, T, Sulkava, R, Haltia, M, et al. Apolipoprotein E, demen-tia, and cortical deposition of beta-amyloid protein. N Engl J Med 1995; 333: 12421247.Google Scholar
80. Nagy, Z, Esiri, MM, Jobst, KA, et al. Influence of the apolipoprotein E genotype on amyloid deposition and neurofibrillary tangle formation in Alzheimer’s disease. Neuroscience 1995; 69: 757761.Google Scholar
81. Evans, KC, Berger, EP, Cho, CG, Weisgraber, KH, Lansbury, PT Jr., Apolipoprotein E is a kinetic but not a thermodynamic inhibitor of amyloid formation: implications for the pathogenesis and treatment of Alzheimer disease. Proc Natl Acad Sci USA 1995; 92: 763767.Google Scholar
82. Zhou, Z, Smith, JD, Greengard, P, Gandy, S. Alzheimer amyloid-beta peptide forms denaturant-resistant complex with type epsilon 3 but not type epsilon 4 isoform of native apolipoprotein E. Mol Med 1996; 2: 175180.Google Scholar
83. Pillot, T, Goethals, M, Vanloo, B, et al. Specific modulation of the fusogenic properties of the Alzheimer beta-amyloid peptide by apolipoprotein E isoforms. Eur J Biochem 1997; 243: 650659.Google Scholar
84. Han, SH, Einstein, G, Weisgraber, KH, et al. Apolipoprotein E is localized to the cytoplasm of human cortical neurons: a light and electron microscopic study. J Neuropathol Exp Neurol 1994; 53: 535544.Google Scholar
85. Han, SH, Hulette, C, Saunders, AM, et al. Apolipoprotein E is present in hippocampal neurons without neurofibrillary tangles in Alzheimer’s disease and in age-matched controls. Exp Neurol 1994; 128: 1326.Google Scholar
86. Blomberg, M, Jensen, M, Basun, H, Lannfelt, L, Wahlund, LO. Increasing cerebrospinal fluid tau levels in a subgroup of Alzheimer patients with apolipoprotein E allele epsilon 4 during 14 months follow-up. Neurosci Lett 1996; 214: 163166.Google Scholar
87. Strittmatter, WJ, Saunders, AM, Goedert, M, et al. Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: implications for Alzheimer disease. Proc Natl Acad Sci USA 1994; 91: 1118311186.Google Scholar
88. Huang, DY, Goedert, M, Jakes, R, et al. Isoform-specific interactions of apolipoprotein E with the microtubule-associated protein MAP2c: implications for Alzheimer’s disease. Neurosci Lett 1994; 182: 5558.Google Scholar
89. Lindh, M, Blomberg, M, Jensen, M, et al. Cerebrospinal fluid apolipoprotein E (apoE) levels in Alzheimer’s disease patients are increased at follow up and show a correlation with levels of tau protein. Neurosci Lett 1997; 229: 8588.Google Scholar
90. Arai, H, Higuchi, S, Sasaki, H. Apolipoprotein E genotyping and cerebrospinal fluid tau protein: implications for the clinical diagnosis of Alzheimer’s disease. Gerontology 1997; 43 (Suppl 1): 210.Google Scholar
91. Craft, S, Peskind, E, Schwartz, MW, et al. Cerebrospinal fluid and plasma insulin levels in Alzheimer’s disease: relationship to severity of dementia and apolipoprotein E genotype. Neurology 1998; 50: 164168.Google Scholar
92. Masliah, E, Mallory, M, Veinbergs, I, Miller, A, Samuel, W. Alterations in apolipoprotein E expression during aging and neu-rodegeneration. Prog Neurobiol 1996; 50: 493503.Google Scholar
93. Nathan, B, Bellosta, S, Sanan, DA, et al. Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science 1994; 264: 850852.Google Scholar
94. Soininen, HS, Riekkinen, PJ Sr., Apolipoprotein E, memory and Alzheimer’s disease. Trends Neurosci 1996; 19: 224228.Google Scholar
95. Chen, Y, Lomnitski, L, Michaelson, DM, Shohami, E. Motor and cog-nitive deficits in apolipoprotein E-deficient mice after closed head injury. Neuroscience 1997; 80: 12551262.Google Scholar
96. Chapman, S, Michaelson, DM. Specific neurochemical derange-ments of brain projecting neurons in apolipoprotein E-deficientmice. J Neurochem 1998; 70: 708714.Google Scholar
97. Ohm, TG, Kirca, M, Bohl, J, et al. Apolipoprotein E polymorphism influences not only cerebral senile plaque load but also Alzheimer-type neurofibrillary tangle formation. Neuroscience 1995; 66: 583587.Google Scholar
98. Soininen, H, Lehtovirta, M, Helisalmi, S, et al. Increased acetyl-cholinesterase activity in the CSF of Alzheimer patients carrying apolipoprotein epsilon4 allele. Neuroreport 1995; 6: 25182520.Google Scholar
99. Soininen, H, Kosunen, O, Helisalmi, S, et al. A severe loss of choline acetyltransferase in the frontal cortex of Alzheimer patients carrying apolipoprotein epsilon 4 allele. Neurosci Lett 1995; 187: 7982.Google Scholar
100. Iyo, M, Namba, H, Fukushi, K, et al. Measurement of acetyl-cholinesterase by positron emission tomography in the brains of healthy controls and patients with Alzheimer’s disease. Lancet 1997; 349: 18051809.Google Scholar
101. Farlow, MR, Lahiri, DK, Poirier, J, Davignon, J, Hui, S. Apolipoprotein E genotype and gender influence response to tacrine therapy. Ann NY Acad Sci 1996; 802: 101110.Google Scholar
102. Svensson, AL, Warpman, U, Hellstrom-Lindahl, E, et al. Nicotinic receptors, muscarinic receptors and choline acetyltransferase activity in the temporal cortex of Alzheimer patients with differing apolipoprotein E genotypes. Neurosci Lett 1997; 232: 3740.Google Scholar
103. Corey-Bloom, J, Tiraboachi, P, Sabbagh, MN, et al. Apolipoprotein genotype does not predict choline acetyltransferase activity or synaptic loss in Alzheimer’s disease. Neurology 1998; 50 (Suppl.4): A60–A61.Google Scholar
104. Lippa, CF, Smith, TW, Saunders, AM, et al. Apolipoprotein E geno-type and Lewy body disease. Neurology 1995; 45: 97103.Google Scholar
105. Egensperger, R, Bancher, C, Kosel, S, et al. The apolipoprotein E epsilon 4 allele in Parkinson’s disease with Alzheimer lesions. Biochem Biophys Res Commun 1996; 224: 484486.Google Scholar
106. Marder, K, Maestre, G, Cote, L, et al. The apolipoprotein epsilon 4 allele in Parkinson’s disease with and without dementia. Neurology 1994; 44: 13301331.Google Scholar
107. Lyketsos, CG, Baker, L, Warren, A, et al. Depression, delusions, and hallucinations in Alzheimer’s disease: no relationship to apolipoprotein E genotype. J Neuropsychiatry Clin Neurosci 1997; 9: 6467.Google Scholar
108. Treves, TA, Bornstein, NM, Chapman, J, et al. APOE-epsilon 4 in patients with Alzheimer disease and vascular dementia. Alzheimer Dis Assoc Disord 1996; 10: 189191.Google Scholar
109. Slooter, AJ, Tang, MX, van Duijn, CM, et al. Apolipoprotein E epsilon4 and the risk of dementia with stroke. A population-based investigation. JAMA 1997; 277: 818821.Google Scholar
110. Skoog, I, Hesse, C, Aevarsson, O, et al. A population study of apoE genotype at the age of 85: relation to dementia, cerebrovascular disease, and mortality. J Neurol Neurosurg Psychiatry 1998; 64: 3743.Google Scholar
111. Tang, MX, Maestre, G, Tsai, WY, et al. Effect of age, ethnicity, and head injury on the association between APOE genotypes and Alzheimer’s disease. Ann NY Acad Sci 1996; 802: 615.Google Scholar
112. Mayeux, R, Ottman, R, Maestre, G, et al. Synergistic effects of trau-matic head injury and apolipoprotein-epsilon 4 in patients with Alzheimer’s disease. Neurology 1995; 45: 555557.Google Scholar
113. O’Meara, ES, Kukull, WA, Sheppard, L, et al. Head injury and risk of Alzheimer’s disease by apolipoprotein E genotype. Am J Epidemiol 1997; 146: 373384.Google Scholar
114. Schupf, N, Kapell, D, Lee, JH, et al. Onset of dementia is associated with apolipoprotein E epsilon4 in Down’s syndrome. Ann Neurol 1996; 40: 799801.Google Scholar
115. Lin, WR, Shang, D, Itzhaki, RF. Neurotropic viruses and Alzheimer disease. Interaction of herpes simplex type 1 virus and apolipoprotein E in the etiology of the disease. Mol Chem Neuropathol 1996; 28: 135141.Google Scholar
116. Itzhaki, RF, Lin, WR, Shang, D, et al. Herpes simplex virus type 1 in brain and risk of Alzheimer’s disease. Lancet 1997; 349: 241244.Google Scholar
117. Albert, SM, Gurland, B, Maestre, G, et al. APOE genotype influences functional status among elderly without dementia. Am J Med Genet 1995; 60: 583587.Google Scholar
118. Reed, T, Carmelli, D, Swan, GE, et al. Lower cognitive performance in normal older adult male twins carrying the apolipoprotein E epsilon 4 allele. Arch Neurol 1994; 51: 11891192.Google Scholar
119. Blesa, R, Adroer, R, Santacruz, P, et al. High apolipoprotein E epsilon 4 allele frequency in age-related memory decline. Ann Neurol 1996; 39: 548551.Google Scholar
120. Yaffe, K, Cauley, J, Sands, L, Browner, W. Apolipoprotein E pheno-type and cognitive decline in a prospective study of elderly community women. Arch Neurol 1997; 54: 11101114.Google Scholar
121. Kuller, LH, Shemanski, L, Manolio, T, et al. Relationship between ApoE, MRI findings, and cognitive function in the Cardiovascular Health Study. Stroke 1998; 29: 388398.Google Scholar
122. Bondi, MW, Salmon, DP, Monsch, AU, et al. Episodic memory changes are associated with the APOE-epsilon 4 allele in nonde-mented older adults. Neurology 1995; 45: 22032206.Google Scholar
123. Kidron, D, Black, SE, Stanchev, P, et al. Quantitative MR volumetry in Alzheimer’s disease – topographic markers and the effects of sex and education. Neurology 1997; 49: 15041512.Google Scholar
124. Ichise, M, Ballinger, JR, Golan, H, et al. Noninvasive quantification of dopamine D2 receptors with iodine-123-IBF-SPECT. J Nucl Med 1996; 37: 513520.Google Scholar
125. Ryding, E. SPECT measurements of brain function in dementia; a review. Acta Neurol Scand Suppl 1996; 168: 5458.Google Scholar
126. Nordberg, A. Application of PET in dementia disorders. Acta Neurol Scand Suppl 1996; 168: 7176.Google Scholar
127. Small, GW, Mazziotta, JC, Collins, MT, et al. Apolipoprotein E type 4 allele and cerebral glucose metabolism in relatives at risk for familial Alzheimer disease. JAMA 1995; 273: 942947.Google Scholar
128. Lehtovirta, M, Soininen, H, Laakso, MP, et al. SPECT and MRI analysis in Alzheimer’s disease: relation to apolipoprotein E epsilon 4 allele. J Neurol Neurosurg Psychiatry 1996; 60: 644649.Google Scholar
129. Bonte, FJ, Weiner, MF, Bigio, EH, White CL3. Brain blood flow in the dementias: SPECT with histopathologic correlation in 54 patients. Radiology 1997; 202: 793797.Google Scholar
130. Johnson, KA, Jones, K, Holman, BL, et al. Preclinical prediction of Alzheimer’s disease using SPECT. Neurology 1998; 50: 15631571.Google Scholar
131. Wahlund, LO. Magnetic resonance imaging and computed tomog-raphy in Alzheimer’s disease. Acta Neurol Scand Suppl 1996; 168: 5053.Google Scholar
132. Pantel, J, Schroder, J, Schad, LR, et al. Quantitative magnetic reso-nance imaging and neuropsychological functions in dementia of the Alzheimer type. Psychol Med 1997; 27: 221229.Google Scholar
133. Jack, CR, Petersen, RC, Xu, YC, et al. Medial temporal atrophy on MRI in normal aging and very mild Alzheimer’s disease. Neurology 1997; 49: 786794.Google Scholar
134. Smith, AD, Jobst, KA. Use of structural imaging to study the pro-gression of Alzheimer’s disease. Br Med Bull 1996; 52: 575586.Google Scholar
135. Jobst, KA, Smith, AD, Szatmari, M, et al. Rapidly progressing atro-phy of medial temporal lobe in Alzheimer’s disease. Lancet 1994; 343: 829830.Google Scholar
136. Jobst, KA, Hindley, NJ, King, E, Smith, AD. The diagnosis of Alzheimer’s disease: a question of image?. J Clin Psychiatry 1994; 55 (Suppl.): 2231.Google Scholar
137. Jr.Jack, CR, Petersen, RC, Xu, YC, et al. Hippocampal atrophy and apolipoprotein E genotype are independently associated with Alzheimer’s disease. Ann Neurol 1998; 43(3): 303310.Google Scholar
138. Small, GW, Komo, S, La Rue, A, et al. Early detection of Alzheimer’s disease by combining apolipoprotein E and neu-roimaging. Ann NY Acad Sci 1996; 802: 7078.Google Scholar
139. Reiman, EM, Caselli, RJ, Yun, LS, et al. Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. N Engl J Med 1996; 334: 752758.Google Scholar
140. Corder, EH, Jelic, V, Basun, H, et al. No difference in cerebral glu-cose metabolism in patients with Alzheimer disease and differing apolipoprotein E genotypes. Arch Neurol 1997; 54: 273277.Google Scholar
141. Lehtovirta, M, Kuikka, J, Helisalmi, S, et al. Longitudinal SPECT study in Alzheimer’s disease: relation to apolipoprotein E polymorphism. J Neurol Neurosurg Psychiatry 1998; 64: 742746.Google Scholar
142. Swartz, RH, Black, SE, Leibovitch, FS, et al. Sex and mental status, but not apolipoprotein E, correlate with parietal and temporal hypoperfusion on SPECT in Alzheimer’s disease. Neurology 1998; 50 (Suppl. 4): A159.Google Scholar
143. Petersen, RC, Smith, GE, Ivnik, RJ, et al. Apolipoprotein E status as a predictor of the development of Alzheimer’s disease in memory-impaired individuals. JAMA 1995; 273: 12741278.Google Scholar
144. Frisoni, GB, Govoni, S, Geroldi, C, et al. Gene dose of the epsilon 4 allele of apolipoprotein E and disease progression in sporadic late-onset Alzheimer’s disease. Ann Neurol 1995; 37: 596604.Google Scholar
145. Stern, Y, Brandt, J, Albert, M, et al. The absence of an apolipoprotein epsilon4 allele is associated with a more aggressive form of Alzheimer’s disease. Ann Neurol 1997; 41: 615620.Google Scholar
146. Kurz, A, Egensperger, R, Haupt, M, et al. Apolipoprotein E epsilon 4 allele, cognitive decline, and deterioration of everyday performance in Alzheimer’s disease. Neurology 1996; 47: 440443.Google Scholar
147. Growdon, JH, Locascio, JJ, Corkin, S, Gomez-Isla, T, Hyman, BT. Apolipoprotein E genotype does not influence rates of cognitive decline in Alzheimer’s disease. Neurology 1996; 47: 444448.Google Scholar
148. Asada, T, Kariya, T, Yamagata, Z, Kinoshita, T, Asaka, A. ApoE epsilon 4 allele and cognitive decline in patients with Alzheimer’s disease. Neurology 1996; 47: 603.Google Scholar
149. Tierney, MC, Szalai, JP, Snow, WG, et al. A prospective study of the clinical utility of ApoE genotype in the prediction of outcome in patients with memory impairment. Neurology 1996; 46: 149154.Google Scholar
150. Murphy, GM Jr., Taylor, J, Kraemer, HC, Yesavage, J, Tinklenberg, JR. No association between apolipoprotein E epsilon 4 allele and rate of decline in Alzheimer’s disease. Am J Psychiatry 1997; 154: 603608.Google Scholar
151. Dal Forno, G, Rasmusson, DX, Brandt, J, et al. Apolipoprotein E genotype and rate of decline in probable Alzheimer’s disease. Arch Neurol 1996; 53: 345350.Google Scholar
152. Corder, EH, Lannfelt, L, Basun, H. Apolipoprotein E genotype and the rate of decline in probable Alzheimer disease [letter; comment]. Arch Neurol 1996; 53: 10941095.Google Scholar
153. Blacker, D, Haines, JL, Rodes, L, et al. ApoE-4 and age at onset of Alzheimer’s disease: The NIMH Genetics Initiative. Neurology 1997; 48: 139147.Google Scholar
154. Payami, H, Grimslid, H, Oken, B, et al. A prospective study of cog-nitive health in the elderly (Oregon Brain Aging Study): effects of family history and apolipoprotein E genotype. Am J Hum Genet 1997; 60: 948956.Google Scholar
155. Plassman, BL, Breitner, JC. Apolipoprotein E and cognitive decline in Alzheimer’s disease. Neurology 1996; 47: 317320.Google Scholar
156. Mortimer, JA. Brain reserve and the clinical expression of Alzheimer’s disease. Geriatrics 1997; 52: S50–S53.Google Scholar
157. Payami, H, Zareparsi, S, Montee, KR, et al. Gender difference in apolipoprotein E – associated risk for familial Alzheimer disease: a possible clue to the higher incidence of Alzheimer disease in women. Am J Hum Genet 1996; 58: 803811.Google Scholar
158. Rao, VS, Cupples, A, van Duijn, CM, et al. Evidence for major gene inheritance of Alzheimer disease in families of patients with and without apolipoprotein E epsilon 4. Am J Hum Genet 1996; 59: 664675.Google Scholar
159. Corder, EH, Saunders, AM, Strittmatter, WJ, et al. The apolipopro-tein E E4 allele and sex-specific risk of Alzheimer’s disease. JAMA 1995; 273: 373374.Google Scholar
160. Adroer, R, Santacruz, P, Blesa, R, et al. Apolipoprotein E4 allele fre-quency in Spanish Alzheimer and control cases. Neurosci Lett 1995; 189: 182186.Google Scholar
161. Yamagata, Z, Asada, T, Kinoshita, A, Zhang, Y, Asaka, A. Distribution of apolipoprotein E gene polymorphisms in Japanese patients with Alzheimer’s disease and in Japanese centenarians. Human Heredity 1997; 47: 2226.Google Scholar
162. Katzman, R, Zhang, MY, Chen, PJ, et al. Effects of apolipoprotein E on dementia and aging in the Shanghai Survey of Dementia. Neurology 1997; 49: 779785.Google Scholar
163. Hendrie, HC, Hall, KS, Hui, S, et al. Apolipoprotein E genotypes and Alzheimer’s disease in a community study of elderly African Americans. Ann Neurol 1995; 37: 118120.Google Scholar
164. Rosenberg, RN, Richter, RW, Risser, RC, et al. Genetic factors for the development of Alzheimer disease in the Cherokee Indian. Arch Neurol 1996; 53: 9971000.Google Scholar
165. Farrer, LA, Cupples, LA, Haines, JL, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease – a meta-analysis. JAMA 1997; 278: 13491356.Google Scholar
166. Sahota, A, Yang, M, Gao, S, et al. Apolipoprotein E-associated risk for Alzheimer’s disease in the African-American population is genotype dependent. Ann Neurol 1997; 42: 659661.Google Scholar
167. Maestre, G, Ottman, R, Stern, Y, et al.Apolipoprotein E and Alzheimer’s disease: ethnic variation in genotypic risks. Ann Neurol 1995; 37: 254259.Google Scholar
168. Talbot, C, Lendon, C, Craddock, N, et al. Protection against Alzheimer’s disease with apoE epsilon 2. Lancet 1994; 343: 14321433.Google Scholar
169. Brayne, C, Harrington, CR, Wischik, CM, et al. Apolipoprotein E genotype in the prediction of cognitive decline and dementia in a prospectively studied elderly population. Dementia 1996; 7: 169174.Google Scholar
170. Lippa, CF, Smith, TW, Saunders, AM, et al. Apolipoprotein E-epsilon 2 and Alzheimer’s disease: genotype influences pathologic phenotype. Neurology 1997; 48: 515519.Google Scholar
171. van Duijn, CM, de Knijff, P, Wehnert, A, et al. The apolipoprotein E epsilon 2 allele is associated with an increased risk of early-onset Alzheimer’s disease and a reduced survival. Ann Neurol 1995; 37: 605610.Google Scholar
172. Seshadri, S, Drachman, DA, Lippa, CF. Apolipoprotein E epsilon 4 allele and the lifetime risk of Alzheimer’s disease. What physicians know, and what they should know. Arch Neurol 1995; 52: 10741079.Google Scholar
173. Evans, DA, Beckett, LA, Field, TS, et al. Apolipoprotein E epsilon4 and incidence of Alzheimer disease in a community population of older persons. JAMA 1997; 277: 822824.Google Scholar
174. Tierney, MC, Szalai, JP, Snow, WG, et al. Prediction of probable Alzheimer’s disease in memory-impaired patients: a prospective longitudinal study. Neurology 1996; 46: 661665.Google Scholar
175. Roses, AD. Apolipoprotein E and Alzheimer’s disease. A rapidly expanding field with medical and epidemiological consequences. Ann NY Acad Sci 1996; 802: 5057.Google Scholar
176. Relkin, NR, Kwon, YJ, Tsai, J, Gandy, S. The National Institute on Aging/Alzheimer’s Association recommendations on the application of apolipoprotein E genotyping to Alzheimer’s disease. Ann NY Acad Sci 1996; 802: 149176.Google Scholar
177. Roses, AD. Apolipoprotein E genotyping in the differential diagno-sis, not prediction, of Alzheimer’s disease. Ann Neurol 1995; 38: 614.Google Scholar
178. Roses, AD, Saunders, AM. Prediction for unimpaired subjects is dif-ferent from diagnosis of demented patients. Ann Neurol 1997; 41: 414416.Google Scholar
179. Welsh-Bohmer, KA, Gearing, M, Saunders, AM, Roses, AD, Mirra, S. Apolipoprotein E genotypes in a neuropathological series from the Consortium to Establish a Registry for Alzheimer’s Disease. Ann Neurol 1997; 42: 319325.Google Scholar
180. Roses, AD. Genetic testing for Alzheimer disease – practical and ethical issues. Arch Neurol 1997; 54: 12261229.Google Scholar
181. Mayeux, R, Saunders, AM, Shea, S, et al. Utility of the apolipopro-tein E genotype in the diagnosis of Alzheimer’s disease. Alzheimer’s Disease Centers Consortium on Apolipoprotein E and Alzheimer’s Disease. N Engl J Med 1998; 338: 506511.Google Scholar
182. Lavenu, J, Pasquier, F, Lebert, F, Jacob, B, Petit, H. Association between medial temporal lobe atrophy on CT and parietotempo-ral uptake decrease on SPECT in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1997; 63: 441445.Google Scholar
183. Anonymous. Statement on use of apolipoprotein E testing for Alzheimer disease. American College of Medical Genetics/American Society of Human Genetics Working Group on ApoE and Alzheimer disease. JAMA 1995; 274: 16271629.Google Scholar
184. Post, SG, Whitehouse, PJ, Binstock, RH, et al. The clinical introduc-tion of genetic testing for Alzheimer disease. An ethical perspective. JAMA 1997; 277: 832836.Google Scholar
185. Mayeux, R, Schupf, N. Apolipoprotein E and Alzheimer’s disease: the implications of progress in molecular medicine. Am J Public Health 1995; 85: 12801284.Google Scholar
186. Anonymous. Apolipoprotein E genotyping in Alzheimer’s disease. National Institute on Aging/Alzheimer’s Association Working Group. Lancet 1996; 347: 10911095.Google Scholar
187. Frisoni, GB, Manfredi, M, Geroldi, C, et al. The prevalence of apoE-epsilon4 in Alzheimer’s disease is age dependent. J Neurol Neurosurg Psychiatry 1998; 65: 103106.Google Scholar
188. Pirttila, T, Soininen, H, Mehta, PD, et al. Apolipoprotein E genotype and amyloid load in Alzheimer disease and control brains. Neurobiol Aging 1997; 18: 121127.Google Scholar
189. Pericak-Vance, MA, Bass, MP, Yamaoka, LH, et al. Complete genomic screen in late-onset familial Alzheimer disease. Evidence for a new locus on chromosome 12. JAMA 1997; 278: 12371241.Google Scholar
190. Reisberg, B. The global deterioration scale for assessment of pri-mary degenerative dementia. Am J Psychiat 1982; 139: 11361139.Google Scholar