Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T02:47:15.476Z Has data issue: false hasContentIssue false

Acute and Chronic Cerebral White Matter Damage in Neonatal Hydrocephalus

Published online by Cambridge University Press:  18 September 2015

Marc R. Del Bigio
Affiliation:
Neuropathology, the Hospital for Sick Children and University of Toronto, Toronto
Marcia C. da Silva
Affiliation:
Neurosurgery, the Hospital for Sick Children and University of Toronto, Toronto
James M. Drake*
Affiliation:
Neurosurgery, the Hospital for Sick Children and University of Toronto, Toronto
Ursula I. Tuor
Affiliation:
Neonatal Research, the Hospital for Sick Children and University of Toronto, Toronto
*
Division of Neurosurgery, Hospital for Sick Children, 555 University Avenu, Toronto, Ontario, Canada M5G 1X8
Rights & Permissions [Opens in a new window]

Abstract:

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The neonatal cat model of kaolin-induced hydrocephalus is associated with progressive and severe ventriculomegaly. In this experiment we studied the evolution of the histopathological changes in hydrocephalic (n = 23) cats from 5–168 days after the induction of hydrocephalus along with age-matched controls (n = 10). In the periventricular white matter, extracellular edema and axonal damage were present within days of the onset of hydrocephalus. This was followed by reactive gliosis, white matter atrophy, and in some animals gross cavitation of the white matter. Even in the chronic, apparently compensated state there was ongoing glial cell death. Six cats were shunted an average of 23.6 ± 6.5 days after the induction of hydrocephalus because they were no longer able to feed independently. In spite of clinical improvement the white matter changes persisted. Overt cortical changes were minimal except where areas of white matter destruction encroached upon the deep layers. The white matter changes are very similar to those seen in periventricular leukomalacia and suggest that ischemia plays a role in neonatal brain injury caused by hydrocephalus.

Résumé:

Résumé:

Atteinte cérébrale aiguë et chronique de la substance blanche dans l’hydrocéphalie néonatale. Dans le modèle animal de l’hydrocéphalie induite par le kaolin chez le chat, on observe une ventriculomégalie progressive sévère. Nous avons étudié l’évolution des changements histopathologiques chez des chats hydrocéphalie (n = 23) et des contrôles appariés pour l’âge (n = 10), sur une période de 5 à 168 jours après l’induction de l’hydrocéphalie. L’oedème extracellulaire et l’atteinte axonale au niveau de la substance blanche périventriculaire étaient présents dans les jours suivant le début de l’hydrocéphalie. Ces changements étaient suivis d’une gliose réactionnelle, d’atrophie de la substance blanche et, chez certains animaux, de la formation de cavités importantes dans la substance blanche. Même à l’état chronique apparemment compensé, le processus de mort cellulaire se poursuivait au niveau des cellules gliales. Six chats ont subi une dérivation, en moyenne 23.6 ± 6.5 jours après l’induction de l’hydrocéphalie, parce qu’ils ne pouvaient plus se nourrir. Les modifications de la substance blanche ont persisté malgré l’amélioration clinique. Les changements corticaux étaient minimes, sauf dans les régions où la destruction de la substance blanche empiétait sur les couches profondes. Les modifications de la substance blache sont très semblables à celles observées dans la leucomalacie périventriculaire, ce qui suggère que l’ischémie joue un rôle dans les lésions cérébrale néonatales causées par l’hydrocéphalie.

Type
Original Articles
Copyright
Copyright © Canadian Neurological Sciences Federation 1994

References

REFERENCES

1. Del Bigio, MR. Neuropathological changes caused by hydrocephalus. Acta Neuropathol 1993; 85: 573585.Google Scholar
2. Hale, PM, McAllister, JP, Katz, SD, et al. Improvement of cortical morphology in infantile hydrocephalic animals after ventriculoperitoneal shunt placement. Neurosurgery 1992; 31: 10851096.Google Scholar
3. Kriebel, RM, Shah, AB, McAllister, JP. The microstructure of cortical neuropil before and after decompression in experimental infantile hydrocephalus. Exp Neurol 1993; 119: 8998.Google Scholar
4. Lovely, TJ, McAllistar, JP, Miller, DW, Lamperti, AA, Wolfson, BJ. Effects of hydrocephalus and surgical decompression on cortical norepinephrine levels in neonatal cats. Neurosurgery 1989; 24: 4352.Google Scholar
5. McAllister, JP, Cohen, MI, O’Mara, KA, Johnson, MH. Progression of experimental infantile hydrocephalus and effects on ventriculoperitoneal shunts: an analysis correlating magnetic resonance imaging with gross morphology. Neurosurgery 1991; 29: 329340.CrossRefGoogle ScholarPubMed
6. Wright, LC, McAllister, JP, Katz, SD, et al. Cytological and cytoarchitectural changes in the feline cerebral cortex during experimental infantile hydrocephalus. Pediatr Neurosurg 1991; 16: 139155.CrossRefGoogle Scholar
7. Chumas, PD, Drake, JM, Del Bigio, MR, Da Silva, M, Tuor, UI. Anaerobic glycolysis preceding white-matter destruction in experimental neonatal hydrocephalus. J Neurosurg 1994; 80: 491501.CrossRefGoogle ScholarPubMed
8. Chugani, HT, Hovda, DA, Villablanca, JR, Phelps, ME. Metabolic maturation of the brain: a study of local cerebral glucose utilization in the developing cat. J Cereb Blood Flow Metabol 1991; 11: 3547.CrossRefGoogle Scholar
9. Cardoso, ER, Del Bigio, MR. Age-related changes of cerebral ventricular size. Part II: Normalization of ventricular size following shunting. Acta Neurochir 1989; 97: 135138.Google Scholar
10. De, SN. A study of the changes in the brain in experimental internal hydrocephalus. J Pathol Bacteriol 1950; 62: 197208.Google Scholar
11. Rubin, RC, Hochwald, GM, Tiell, M, Mizutani, H, Ghatak, N. Hydrocephalus: I. Histological and ultrastructural changes in the pre-shunted cortical mantle. Surg Neurol 1976; 5: 109114.Google Scholar
12. Weller, RO, Wisniewski, H, Shulman, K, Terry, RD. Experimental hydrocephalus in young dogs: histological and ultrastructural study of brain tissue damage. J Neuropathol Exp Neurol 1971; 30:613626.Google Scholar
13. Yamada, H, Yokota, A, Furuta, A, Horie, A. Reconstitution of shunted mantle in experimental hydrocephalus. J Neurosurg 1992; 76: 856862.Google Scholar
14. Weller, RO, Williams, BN. Cerebral biopsy and assessment of brain damage in hydrocephalus. Arch Dis Child 1975; 50: 763768.Google Scholar
15. Povlishock, JT Traumatically induced axonal injury: pathogenesis and pathobiological implications. Brain Pathol 1992; 2: 112.Google Scholar
16. Schweitzer, JB, Dohan, FC. Diffuse axonal injury: windows for therapeutic intervention allowed by its pathobiology. Virchows Arch A 1993; 423: 153156.CrossRefGoogle ScholarPubMed
17. Del Bigio, MR, Bruni, JE. Periventricular pathology in hydrocephalic rabbits before and after shunting. Acta Neuropathol 1988; 77: 186195.Google Scholar
18. Strittmatter, SM, Vartanian, T, Fishman, MC. GAP-43 as a plasticity protein in neuronal form and repair. J Neurobiol 1992; 23: 507520.CrossRefGoogle ScholarPubMed
19. Kapfhammer, JP, Schwab, ME. Inverse patterns of myelination and GAP-43 expression in the adult CNS: neurite growth inhibitors as regulators of neuronal plasticity? J Comp Neurol 1994; 340: 194206.CrossRefGoogle ScholarPubMed
20. Curtis, R, Hardy, R, Reynolds, R, Spruce, BA, Wilkin, GP. Down-regulation of GAP-43 during oligodendrocyte development and lack of expression by astrocytes in vivo: implications for macroglia! differentiation. Eur J Neurosci 1991; 3: 876886.CrossRefGoogle ScholarPubMed
21. Vitkovic, L, Mersel, M. Growth-associated protein 43 is down-regulated in cultured astrocytes. Metabolic Brain Dis 1989; 4: 4753.CrossRefGoogle ScholarPubMed
22. Davison, AN, Dobbing, J. Myelination as a vulnerable period in brain development. Brit Med Bull 1966; 22: 4044.Google Scholar
23. Korr, H. Proliferation and cell cycle parameters of astrocytes. In: Federoff, S, Vernadakis, A, eds. Astrocytes: Cell Biology and Pathology of Astrocytes. Volume 3. Orlando: Academic Press, 1986:77127.Google Scholar
24. Gilles, FH, Murphy, SF. Perinatal telencephalic leucoencephalopathy. J Neurol Neurosurg Psychiatry 1969; 32: 404413.Google Scholar