Hostname: page-component-599cfd5f84-9drbd Total loading time: 0 Render date: 2025-01-07T07:34:15.541Z Has data issue: false hasContentIssue false

Wω2,p -Solvability of the Cauchy–Dirichlet Problem for Nondivergence Parabolic Equations with BMO Coefficients

Published online by Cambridge University Press:  20 November 2018

Lin Tang*
Affiliation:
LMAM, School of Mathematical Sciences, Peking University, Beijing, 100871, P.R. China email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this paper, we establish the regularity of strong solutions to nondivergence parabolic equations with BMO coefficients in nondoubling weighted spaces.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2012

References

[1] Acquistapace, P., On BMO regularity for linear elliptic systems. Ann. Mat. Pura Appl. 161(1992), 231-269. http://dx. doi. org/10.1007/BF01759640Google Scholar
[2] Alvarez, J., Bagby, R., Kurtz, D., and Pérez, C., Weighted estimates for commutators of linear operator. Studia Math. 104(1993), no. 2, 195-209.Google Scholar
[3] Byun, S.-S., Parabolic equations with BMO coefficients in Lipschitz domains. J. Differential Equations 209(2005), no. 2, 229-265. http://dx. doi. org/10.1016/j. jde.2004.08.018Google Scholar
[4] Bramanti, M. and Cerutti, M.,W1,2 p solvability for the Cauchy-Dirichlet problem for parabolic equations with VMO coefficients. Comm. Partial Differential Equations 18(1993), no. 9-10, 1735-1763. http://dx. doi. org/10.1080/03605309308820991Google Scholar
[5] Chiarenza, F., Frasca, M., and Longo, P., Interior W 2, p estimates for nondivergence elliptic equations with discontinuous coefficients. Ricerche. Mat. 40(1991), no. 1, 149-168.Google Scholar
[6] Chiarenza, F., Frasca, M., and Longo, P.,W2,p solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients. Trans. Amer. Math. Soc. 336(1993), no. 2, 841-853. http://dx. doi. org/10.2307/2154379Google Scholar
[7] Haller-Dintelmann, R., Heck, H., and Hieber, M., LpLq estimates for parabolic systems in non-divergence form with VMO coefficients. J. London Math. Soc. 74(2006), no. 3, 717-736. http://dx. doi. org/10.1112/S0024610706023192Google Scholar
[8] Fabe, E. and Riviere, N., Symbolic calculus of kernels with mixed homogeneity. In: Singular Integrals. American Mathematical Society, Providence, RI, 1967, pp. 106-127.Google Scholar
[9] Garćıa-Cuerva, J. and Rubio de Francia, J., Weighted Norm Inequalities nnd Related Topics. North-Holland Mathematics Studies 116, North-Holland, Amsterdam, 1985.Google Scholar
[10] Heck, H. and Hieber, M., Maximal Lp-regularity for elliptic operators with VMO-coefficients. J. Evol. Equ. 3(2003), no. 2, 332-359.Google Scholar
[11] Jones, P., Extension theorems for BMO. Indiana Univ. Math. J. 29(1980), no. 1, 41-66. http://dx. doi. org/10.1512/iumj.1980.29.29005Google Scholar
[12] John, F. and Nirenberg, L., On functions of bounded mean oscillation. Comm. Pure Appl. Math, 14(1961), 415-426. http://dx. doi. org/10.1002/cpa.3160140317Google Scholar
[13] Li, X. and Yang, D., Boundedness of some sublinear operators on Herz spaces. Illinois J. Math. 40(1996), no. 3, 494-501.Google Scholar
[14] Krylov, N., Parabolic and elliptic equations with VMO coefficients. Comm. Partial Differential Equations 32(2007), no. 1-3, 453-475. http://dx. doi. org/10.1080/03605300600781626Google Scholar
[15] Krylov, N., Parabolic equations with VMO coefficients in Sobolev spaces with mixed norms. J. Funct. Anal. 250(2007), no. 2, 521-558. http://dx. doi. org/10.1016/j. jfa.2007.04.003Google Scholar
[16] Krylov, N., Lectures on Elliptic and Parabolic Equations in Sobolev spaces. Graduate Studies in Mathematics 96. American Mathematical Society, Providence, RI, 2008.Google Scholar
[17] Krylov, N., On parabolic PDEs and SPDEs in Sobolev spaces W 2,p without and with weights. In: Topics in Stochastic Analysis and Nonparametric Estimation. IMA Vol. Math. Appl. 145, Springer, New York, 2008, pp. 151-197.Google Scholar
[18] Sarason, D., Functions of vanishing mean oscillation. Trans. Amer. Math. Soc. 207(1975), 391-405. http://dx. doi. org/10.1090/S0002-9947-1975-0377518-3Google Scholar