Article contents
Sur Les Isométries De Lp(X) Et Le Théorème Ergodique Vectoriel
Published online by Cambridge University Press: 20 November 2018
Extract
Etant donné un opérateur T sur un espace LP (1 < p < ∞), la théorie ergodique s'intéresse à la convergence presque sûre des moyennes de Césaro
des itérés d'un point f de Lp par T. On dit que T vérifie le théorème ergodique si cette convergence a lieu pour tout f de Lp.
Parmi les nombreux résultats sur cette question (cf. [21]) nous citerons d'abord ceux de A. Ionescu-Tulcea ([19]) et R. Chacon-S. A. McGrath ([10]) que l'on peut réunir dans l'assertion suivante:
“Si 1 < p < ∞ et T une isométrie positive de Lp, ou si 1 < p ≠ 2 < ∞ et si T est une isométrie surjective de Lp, alors T vérifie le théorème ergodique”.
Nous nous intéressons ici à une version vectorielle de ce théorème. Plus précisément, si X est un espace de Banach réel, un opérateur linéare T sur l'espace LP(X) est dit vérifier le théorème ergodique vectoriel si la suite des moyennes de Césaro
converge presque sûrement en norme dans X, quel que soit f ∊ Lp(X).
- Type
- Research Article
- Information
- Copyright
- Copyright © Canadian Mathematical Society 1988
References
- 2
- Cited by