Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-25T06:28:57.575Z Has data issue: false hasContentIssue false

Subspaces of Rearrangement-Invariant Spaces

Published online by Cambridge University Press:  20 November 2018

Francisco L. Hernandez
Affiliation:
Facultad de Matematicas Universidad Complutense28040 Madrid Spain, e-mail: [email protected]
Nigel J. Kalton
Affiliation:
Department of Mathematics University of Missouri Columbia, Missouri 65211 U.S.A., e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We prove a number of results concerning the embedding of a Banach lattice X into an r. i. space Y. For example we show that if Y is an r. i. space on [0, ∞) which is p-convex for some p > 2 and has nontrivial concavity then any Banach lattice X which is r-convex for some r > 2 and embeds into Y must embed as a sublattice. Similar conclusions can be drawn under a variety of hypotheses on Y; if X is an r. i. space on [0, 1] one can replace the hypotheses of r-convexity for some r > 2 by XL2.

We also show that if Y is an order-continuous Banach lattice which contains no complemented sublattice lattice-isomorphic to 2X is an order-continuous Banach lattice so that 2 is not complementary lattice finitely representable in X and X is isomorphic to a complemented subspace of Y then X is isomorphic to a complemented sublattice of YN for some integer N.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 1996

References

1. Abramovich, Y.A., Operators preserving disjointness on rearrangement-invariant spaces, Pacific J., Math. 148(1991), 201207.Google Scholar
2. Bennett, C. and Sharpley, R., Interpolation of operators, Academic Press, Orlando, 1988.Google Scholar
3. Bretagnolle, J. and Dacunha, D.-Castelle, Application de l’étude de certaines formes linéaires aléatoires au plongement d'espaces de Banach dans les espaces LP, Ann. Sci. École Norm., Sup. 2(1969), 437480.Google Scholar
4. Calderón, A.P., Spaces between L1 and L∞ and the theorem of Marcinkiewicz, Studia, Math. 26(1966), 273299.Google Scholar
5. Carothers, N.L., Rearrangement-invariant subspaces of Lorentz function spaces, Israel J., Math. 40(1981), 217228.Google Scholar
6. Carothers, N.L., Rearrangement-invariant subspaces of Lorentz function spaces II, Rocky Mountain J., Math. 17(1987), 607616.Google Scholar
7. Carothers, N.L. and Dilworth, S.J., Geometry of Lorentz spaces via interpolation, Longhorn Notes, University of Texas, 19851986. 107-134.Google Scholar
8. Carothers, N.L., Subspaces ofLp,q, Proc. Amer. Math., Soc. 104(1988), 537545.Google Scholar
9. Carothers, N.L., Some Banach space embeddings of classical function spaces, Bull. Austral. Math., Soc. 43(1991), 7377.Google Scholar
10. Casazza, R G. and Kalton, N.J., Uniqueness of unconditional bases in Banach spaces, Israel J. Math., to appear.Google Scholar
11. Casazza, R G., Kalton, N.J. and Tzafriri, L., Decompositions of Banach lattices into direct sums, Trans. Amer. Math., Soc. 304(1987), 771800.Google Scholar
12. Dacunha, D.-Castelle, Surune théorème de J. L. Krivine concernant la caracterisation des classes d ‘espaces isomorphes a des espaces d“Orlicz génèralisés et des classes voisines, Israel J., Math. 13(1972), 261276.Google Scholar
13. Dilworth, S.J., Intersection of Lebesgue spaces Lx andL2, Proc. Amer. Math. Soc. 103(1988), 11851188. 14 , A scale of linear spaces closely related to the Lp scale, Illinois J., Math. 34(1990), 140158.Google Scholar
15. Dor, L.E., On projections in Lx, Ann. of, Math. 102(1975), 463474.Google Scholar
16. Dor, L.E. and Starbird, T., Projections of Lp onto subspaces spanned by independent random variables, Compositio, Math. 39(1979), 141175.Google Scholar
17. Garcia, A. del Amo and R Hernandez, L., On embeddings of function spaces into LP + Lq, Contemporary, Math. 144(1993), 107113.Google Scholar
18. Haydon, R.G., Levy, M. and Raynaud, Y., Randomly normed spaces, Travaux en Cours 43, Hermann, Paris, 1991.Google Scholar
19. Hernandez, R L. and Rodriguez-Salinas, B., Lattice-embedding LP into Orlicz spaces, Israel J., Math. 90(1995), 167188.Google Scholar
20. Hernandez, R L. and Ruiz, C., Universal classes of Orlicz function spaces, Pacific J., Math. 155(1992), 8798.Google Scholar
21. Johnson, W.B., Maurey, B., Schechtman, G. and Tzafriri, L., Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. 217, 1979.Google Scholar
22. Johnson, W.B. and Schechtman, G., Sums of independent random variables in r. ﹛.function spaces, Ann., Probab. 17(1989), 789800.Google Scholar
23. Kalton, N.J., EmbeddingLx in a Banach lattice, Israel J., Math. 32(1979), 209220.Google Scholar
24. Kalton, N.J., Convexity conditions for non-locally convex lattices, Glasgow Math., J. 25(1984), 141152.Google Scholar
25. Kalton, N.J., Representations of operators between function spaces, Indiana Univ. Math., J. 33(1984), 639665.Google Scholar
26. Kalton, N.J., Compact and strictly singular operators on certain function spaces, Arch., Math. 43(1984), 6678.Google Scholar
27. Kalton, N.J., Lattice structures on Banach spaces, Mem. Amer. Math. Soc. 493, 1993.Google Scholar
28. Kalton, N.J., M-ideals of compact operators, Illinois J., Math. 37(1993), 147169.Google Scholar
29. Kalton, N.J., Calderón couples of rearrangement-invariant spaces, Studia, Math. 106(1993), 233277.Google Scholar
30. Kalton, N.J. and Montgomery-Smith, S.J., Set functions and factorization, Arch., Math. 61(1993), 183200.Google Scholar
31. Krivine, J.L., Théorèmes de factorisation dans les espaces reticules, Seminaire Maurey-Schwartz, Exposes 22-23, 19731974. Ecole Polytechnique, Paris.Google Scholar
32. Lindenstrauss, J. and Tzafriri, L., On Orlicz sequence spaces III, Israel J., Math. 14(1973), 368389.Google Scholar
33. Lindenstrauss, J. and Tzafriri, L., Classical Banach spaces I, Sequence spaces, Springer Verlag, Berlin, Heidelberg, New York, 1977.Google Scholar
34. Lindenstrauss, J., Classical Banach spaces II, Function spaces, Springer Verlag, Berlin, Heidelberg, New York, 1979.Google Scholar
35. Mityagin, B.S., An interpolation theorem for modular spaces (in Russian), Mat., Sb. 66(1965), 473482.Google Scholar
36. Meyer, P.-Nieberg, Banach lattices, Springer Verlag, Berlin, Heidelberg, New York, 1991.Google Scholar
37. Musielak, J., Orlicz spaces and modular spaces, Springer Lecture Notes 1034, 1983.Google Scholar
38. Raynaud, Y., Complemented hilbertian subspaces in rearrangement-invariant function spaces, Illinois J., Math. 39(1995), 212250.Google Scholar
39. Raynaud, Y. and Schütt, C., Some results on symmetric subspaces ofL\, Studia, Math. 89(1988), 2735.Google Scholar
40. Schutt, C., Lorentz spaces which are isomorphic to subspaces ofL\, Trans. Amer. Math., Soc. 314(1989), 583595.Google Scholar
41. Sourour, A.R., Pseudo-integral operators, Trans. Amer. Math., Soc. 253(1979), 339363.Google Scholar
42 Weis, L., On the representation of positive operators by random measures, Trans. Amer. Math. Soc. 285 (1984), 535-564.Google Scholar
43 Wnuk, W., Representations of Orlicz lattices, Dissertationes Math. 235, 1984.Google Scholar